

Supporting Document 4

Facility Characteristics Report

Waste Management of Canada Corporation

West Carleton Environmental Centre Landfill Footprint Expansion

FACILITY CHARACTERISTICS REPORT

Prepared by: AECOM Canada Ltd.

Project Number: 60242342-9

Date: August, 2012

Table of Contents

Page

1.	Introd	Juction	.1
	1.1	Background	1
	1.2	Objectives of Document	2
2.	Exist	ing Site Characteristics	. 3
	2.1	Existing Setting	3
	2.2	Existing Operations	3
	2.3	Stormwater Management	4
	2.4	Leachate Management	4
	2.5	Gas Management	5
	2.6	Monitoring and Site Management Activities	5
3.	Prope	osed Design	. 7
	3.1	Waste Stream	7
		3.1.1 Service Area	7
		3.1.2 Waste Capacity Requirements	7
		3.1.3 Waste Quantities and Characteristics	7
	3.2	Landfill Design	8
		3.2.1 General Considerations	8
		3.2.2 Footprint Location and Buffers	8
		3.2.3 Final Contours	9
		3.2.4 Base Grades	9
		3.2.5 Seismic Slope Stability Analysis	9 10
		3.2.0 Sile Entrance and Rodus	10
		3.2.8 Office and Equipment Maintenance Facility	11
		3.2.9 Other WCEC Facilities	11
4.	Storn	nwater Management	12
5.	Leach	nate Management	14
0.	 0 u 0.	Proposed Leachate Management System	 14
	0.1	5.1.1 Leachate Containment and Collection	14
		5.1.2 Final Cover	15
		5.1.3 Leachate Treatment	15
	5.2	Estimated Leachate Generation Rates	16
	5.3	Assessment of Potential Contaminant Flux through Base Liner System	19
6.	Gas I	Management	21
	6.1	Proposed Landfill Gas Controls	21
	6.2	Assessment of Landfill Gas Generation	21
7.	Deve	opment and Operations	23
	7.1	Sequence of Landfill Development	23
	7.2	Site Materials Balance	23
	7.3	Traffic Associated with Landfill Construction and Operation	24
	7.4	Operational Characteristics	25
		7.4.1 Landfill Operations	25

7.4.2	Site Staffing	
7.4.3	Equipment	
Site Closur	e and End Use	

List of Figures

8.

FCR -01	Site Location Plan
FCR-02	Existing Conditions
FCR-03	Facility Layout
FCR-04	Bottom of Liner System Contours
FCR-05	Secondary Leachate Collection System Layout
FCR-06	Primary Leachate Collection System Layout
FCR-07	Potential Locations for Future Ancillary Facilities
FCR-08	Progression of Liner Construction and Waste Placement – Phase 1
FCR-09	Progression of Waste Placement – Phase 2
FCR-10	Cross-sections 'A' and 'B' and Final Cover Detail
FCR-11	Cross-sections 'C' and 'D' and Base Liner System Detail

NOTE: Direction references in this report are provided relative to Discussion North as shown on Figures.

List of Tables

Table 4-1:	New SWM Facilities – Flow and Volume Estimates	13
Table 4-2:	New SWM Facilities – Infiltration Estimates from Second Stage of SWM	
	Ponds	13
Table 5-1:	Leachate Generation for Various Landfill Operating Conditions	18
Table 5-2:	Leachate Concentrations Used As Input to the POLLUTE Model	19
Table 5-3:	Results of the POLLUTE Model	20
Table 7-1:	Earthworks Balance	23
Table 7-2:	Base Liner, Leachate Collection System, and Final Cover Volumes	24
Table 7-3:	Traffic Scenarios Based on Proposed Development Sequence	25

Appendices

- Appendix A. Seismic Slope Stability Analysis
- Appendix B. Leachate Generation Rate Estimation
- Contaminant Flux Modelling Appendix C.
- Appendix D. Landfill Gas Generation Assessment
- Truck Traffic Associated with the Importation of Construction Materials Appendix E.

1. Introduction

1.1 Background

Waste Management of Canada Corporation (WM) is undertaking an Environmental Assessment (EA) for a proposed undertaking consisting of the provision of a new landfill footprint at the existing Ottawa Waste Management Facility (Ottawa WMF). The new landfill footprint will be one component of the proposed West Carleton Environmental Centre (WCEC). The existing Ottawa WMF is located on Lots 3 and 4, Concession 3 in the former Township of Huntley, formerly in the Township of West Carleton, now the City of Ottawa near the intersection of Carp Road and Highway 417.

To date WM has undertaken and received approval of a Terms of Reference (ToR) for identification and assessment of a new landfill footprint as part of the WCEC. The study area considered in the ToR are lands within the area bounded by Highway 417, Carp Road and Richardson Sideroad, as shown in Figure FCR-01. WM presently owns or has agreements to purchase lands within this area. Two distinct landfill development envelopes were presented in the ToR and these were identified by applying the following constraints within the study area:

- Ownership of land by WM or the option to purchase land;
- Existing natural environment features;
- Land use constraints; and,
- Perimeter buffer zones.

The development envelopes are referred to by their proximity to the Ottawa WMF, namely to the west of William Mooney Road (West Envelope) and to the north of the Ottawa WMF (North Envelope). The West and North Envelopes have been identified as the areas within which the Alternative Methods for Carrying out the Undertaking will be analyzed in the EA.

A *Conceptual Design Report* (CDR) was prepared which presented information on four footprint options within the development envelopes initially identified in the ToR. The information provided for each option included:

- location within the development envelopes including buffer zones to property boundaries and sensitive environmental features;
- configuration of side slopes and height;
- estimated traffic levels;
- leachate generation rate; and,
- other design and operational assumptions.

Comparative analyses of footprint options presented in the CDR were carried out by the technical disciplines which are part of the project team. The analyses led to the selection of Option 2 as the preferred footprint. Option 2 is located within the central part of the north envelope and north of the existing landfill as shown in Figure FCR-02.

Option 2 was the basis of further design development which is presented in this *Facility Characteristics Report (FCR)*. The landfill design concept presented in the FCR is the subject of a detailed impact assessment by the technical disciplines which will determine the net effects that will be caused, or that might reasonably be caused, on the environment (i.e., the advantages and disadvantages to the environment). The detailed impact assessment includes consideration of any mitigation that might be necessary to reduce or eliminate impacts, and the appropriate monitoring, contingency and impact management plans.

1.2 Objectives of Document

The FCR presents preliminary design and operations information for the preferred new landfill footprint, defined as Option 2 in the CDR. This FCR provides information on all main aspects of landfill design and operations including:

- site layout design;
- surface water management
- leachate management;
- gas management; and,
- landfill development sequence and daily operations.

The FCR also provides estimates of parameters relevant to the detailed impact assessment including estimates of leachate generation, contaminant flux through the liner system, landfill gas generation, and traffic levels associated with waste and construction materials haulage.

2. Existing Site Characteristics

2.1 Existing Setting

The Ottawa WMF is located on Lots 3 and 4, Concession 3 in the former Township of Huntley, formerly in the Township of West Carleton, now the City of Ottawa near the intersection of Carp Road and Highway 417. The landfill at the Ottawa WMF occupies 35 hectares (ha) within a 104 ha site bordered by City of Ottawa Road 5 (Carp Road) to the east, Highway 417 to the south, William Mooney Road to the west, and private lands and Richardson Side Road to the north as shown in Figure FCR-01.

Land uses surrounding the site include agriculture, aggregate extraction and processing, concrete production, commercial, and residential. The lands immediately to the east of Carp Road contain a quarry and aggregate processing plant and two concrete batch plant operations. A small industrial operation, Laurysen Kitchens, exists immediately north of the existing landfill on the west side of Carp Road.

2.2 Existing Operations

The existing conditions at the Ottawa WMF are shown in Figure FCR-02. The landfill operates under Provisional Certificate of Approval No. A461002 and is licensed to receive domestic, commercial and non-hazardous solid industrial wastes from within the Province of Ontario. Communities utilizing the landfill have included the City of Ottawa as well as the Town of Smith Falls and the Townships of Beckwith, Carleton Place, Montague and Mississippi Mills (also referred to as the "Good Neighbour Zone"). As of the preparation of this report the landfill has reached its approved capacity. The closed south cell is a former landfill (historically known as the 'Rump Dump') which is separate from and situated south of the existing landfill, shown on Figure FCR-02.

Current activities at the Ottawa WMF include the following:

- Landfill and waste processing operations;
- Public recycling drop-off facility (including electronics recycling);
- Drop-off facility for used construction and renovation materials (a partnership with Habitat for Humanity);
- Leachate management operations (discussed further in Section 2.4);
- Landfill gas management operations (discussed further in Section 2.5); and
- Monitoring and site management activities (discussed further in Section 2.6).

The majority of site traffic is from the south (417 and northbound Carp Road).

2.3 Stormwater Management

The Ottawa WMF falls within the Huntley Creek subwatershed, which drains into the Carp River located approximately 4 km to the northeast of the site. Currently there is no direct surface discharge to this subwatershed from the existing landfill and its associated operations. The site is underlain by relatively permeable soils and surface water infiltrates to the shallow water table via three defined recharge areas, two of which have sedimentation forebays. These are identified in Figure FCR-02 as SWMF #1/Depression #3; SWMF #2/Depression #1; and Depression #2.

Depressions #4 and #5 are located to the north of the existing landfill adjacent to Carp Road. These are the result of historic aggregate extraction operations and function as groundwater recharge areas similar to the other noted ponds/depressions but do not accept drainage from the existing landfill.

2.4 Leachate Management

The approximate eastern third of the existing landfill was constructed with a geosynthetic liner and leachate collection system. The western two-thirds of the landfill is unlined, and few records exist regarding historical excavation depths, previous landfilling practices, and the base which existed beneath the unlined portion of the mound. The unlined portion of landfill has resulted in an eastward-migrating leachate plume. Groundwater impacts are being addressed through the operation of a series of groundwater purge wells located along the eastern perimeter of the site. Collected leachate and impacted groundwater are being discharged to the City of Ottawa's sanitary sewer system.

Other leachate control measures in place at the site include:

- Final cover has been applied to the landfill. The final cover consists of an engineered soil cover over most of the waste with a portion covered by geomembrane cap (termed the 'beanie cap').
- Poplar tree plantations are maintained in an area south of the landfill. These plantations are irrigated with a mixture of surface pond water and leachate.
- Approval was recently received from the MOE for a sequencing-batch reactor (SBR) system to pre-treat leachate from the landfill prior to discharge to the City sewer system.

2.5 Gas Management

Landfill gas is collected by an active extraction system which includes over 180 vertical wells and 1,600 m of horizontal piping installed within and adjacent to the landfill. The geomembrane 'beanie' cap contributes to the collection of landfill gas by reducing the venting of gas to the atmosphere.

Collected gas is piped to a Gas-to-Energy Plant which can generate up to 6.4 MW of energy under current gas generation rates, as well as to a flaring facility which includes enclosed and candlestick flares.

In addition to the gas extraction system, an air barrier system has been installed along the eastern boundary of the site in response to the detection of subsurface migration of landfill gas from the existing landfill at this location. The air barrier system injects clean air into the subsurface via a series of wells to create a pressure barrier limiting the subsurface migration of gas.

2.6 Monitoring and Site Management Activities

Monitoring and site management activities currently undertaken by WM include the following:

- Operational monitoring and maintenance of Engineered Facilities including:
 - > Purge Well System:
 - Quality and volume of water discharged to sewer;
 - Water levels in purge wells;
 - Regular preventative maintenance of pumps, controls and related components.
 - Landfill Gas Extraction System
 - Daily operational monitoring;
 - Weekly system balancing;
 - Regular preventative maintenance on collection and blower systems;
 - Quarterly reporting to MOE.
- Environmental monitoring including:
 - Groundwater monitoring including measurement of groundwater elevation (monthly or annually, depending on monitor location), and sampling/ analysis for various indicator parameters (once or twice annually, depending on monitor location).
 - Surface water monitoring in various ponds and ditches around the site, including measurement of surface water elevations (monthly or annually, depending on location), and sampling/analysis for various indicator parameters (once or twice annually, depending on location).

- Landfill gas monitoring on a monthly basis using a hand-held multi-gas monitoring instrument in on-site gas monitoring wells.
- > Annual reporting/interpretation of monitoring results.
- Regular visual inspections of the landfill cover, as well as surface air emissions surveys to determine where gas extraction vacuum needs to be increased.
- General site housekeeping inspections including dust, litter, and cleanliness of site roadways.
- Response to odour complaints received from site neighbours.

As a condition of the ECA for the existing landfill, monitoring and site management activities are outlined in an EMP. The annual monitoring and site management activities undertaken at the existing landfill are documented in an annual report. A copy of previous annual reports is available at http://wcec.wm.com/. For the development and operation of the new landfill footprint these monitoring and site management activities will evolve as necessary to include the new landfill in compliance with good management practices and regulatory requirements.

3. Proposed Design

3.1 Waste Stream

3.1.1 Service Area

An Ontario-wide service area is being requested for the new landfill. It is intended that the landfill will largely receive residual wastes from generators within the City of Ottawa with smaller volumes from neighbouring municipalities.

3.1.2 Waste Capacity Requirements

The new landfill capacity is based on WM's assessment that there is a sustainable market opportunity to receive up to 400,000 tonnes per year of waste over an approximate 10 year planning period. The landfill airspace requirement corresponding to this opportunity is estimated at 6.5 million m³ which includes daily cover material. The airspace requirement is based on the following:

- a) 400,000 T/yr over a 10 year period equates to a total waste tonnage of 4,000,000 T.
- b) In-place waste density has been estimated as 0.725 T/m³. Waste density is influenced by numerous factors including waste type and operating methods, although this value is considered reasonable for a large, modern landfilling facility. At this density 4,000,000 T corresponds to a waste volume of 5,517,000 m³.
- c) A waste to daily cover ratio of 6:1 (approximately 15%) based on WM operating experience which provides a balance between the efficient use of cover material and management of nuisance effects. At this ratio the total volume of daily cover soil would be 920,000 m³.
- d) The total volume of waste and daily cover based on these parameters is 6,437,000 m³. For planning purposes the required airspace requirement is approximated as 6,500,000 m³.
- e) The volume occupied by the final cover used to close the landfill site is not included in the noted airspace requirement.

3.1.3 Waste Quantities and Characteristics

WM anticipates receiving an average of 400,000 T/yr of waste over a 10 year period, consisting primarily of institutional, commercial, and industrial waste, as well as residential waste and

'Special' waste. 'Special' waste consists primarily of impacted soils that may be used for daily or interim cover.

The composition of the waste stream is expected to vary based on actual waste sources.

3.2 Landfill Design

3.2.1 General Considerations

The new landfill will be designed in compliance with the requirements of Ontario Regulation 232/98. The regulation allows two approaches for designing a landfill to protect groundwater quality – a site specific design, or a generic design. The site specific approach allows a proponent to design the leachate controls (e.g., base liner, leachate collection system, final cover) to suit the site setting provided that the Reasonable Use limits for groundwater quality are met. The generic approach allows the proponent to select one of two generic designs which have been developed such that the Reasonable Use limits are met within a broad range of hydrogeologic settings. WM intends to design the site with the Generic II – Double Liner system as specified in the regulation, or MOE-approved equivalent.

3.2.2 Footprint Location and Buffers

The layout of the new footprint is shown in Figure FCR-03 and is described as follows:

- The southern half of the footprint is on WM-owned lands and the northern half is on lands that WM has options to purchase.
- A 100 m buffer is maintained between the north limit of the footprint and the private lands to the north (e.g., lands which front onto Richardson Side Road) in accordance with Ontario Regulation 232/98.
- An approximate 350 m buffer is maintained between the east limit of the footprint and Carp Road.
- A light industrial building (e.g., the Laurysen building) is situated in the eastern portion of WM optioned lands. WM anticipates using the Laurysen building for equipment storage/maintenance or waste diversion activities in the future.
- An approximate 45 to 50 m buffer is maintained between the toe of slope of the existing and new landfills. This allows sufficient area for a new waste haul road to the new footprint and for maintenance and monitoring access.

• The location of the west limit of the footprint was determined by maintaining the noted buffers and providing the required 6,500,000 m³ capacity while maintaining landfill elevation below 158 mASL (as reported in the CDR) and maintaining side slopes required by Ontario Regulation 232/98 (e.g., varying from 4H to 1V to 5%.). This results in an approximate 146 m buffer between the west limit of the footprint and William Mooney Road. This buffer preserves a portion of the existing woodlot within the west part of the WM-owned lands.

3.2.3 Final Contours

The final contours of the landfill are shown in Figure FCR-03 and reflect a rectangular landform with a maximum elevation (top of final cover) of 155.7 mASL. This elevation is approximately 30.7 m above the surrounding existing grade. By comparison, the maximum elevation of the existing Ottawa WMF landfill is approximately 172 mASL or approximately 47 m above the surrounding existing grade. The contours reflect maximum side slopes of 4H to 1V, and a minimum slope of 5%. The total footprint area of the new landfill is 37.8 ha.

3.2.4 Base Grades

The base grades for the landfill have been developed such that the base of the landfill liner system will be at or above the predicted maximum shallow groundwater level. The approximate elevation contours for the base of the liner system are shown in Figure FCR-04.

The design and layout of the new landfill liner and leachate collection system are discussed in Section 5.1.1.

3.2.5 Seismic Slope Stability Analysis

Slope stability analyses were performed to assess the potential effect of ground motion due to seismic activity on the slope stability of the landfill and liner system.

Unlike plate boundary regions where the rate and size of seismic activity is directly correlated with plate interaction, eastern Canada is part of the stable interior of the North American Plate. The damage potential of an earthquake is determined by how the ground moves. Expected ground motion can be calculated on the basis of probability, and the expected ground motions are referred to as 'seismic hazard'. Ground motion probability values are given in terms of probable exceedance, that is, the likelihood of a given horizontal acceleration or velocity being exceeded during a particular period. The probability used in the 2010 National Building Code of Canada is 0.000404 per annum, equivalent to a 2-per-cent probability of exceedance over 50 years.

Seismic slope stability analyses using the pseudo-static factor of safety approach was used. In this method, a seismic coefficient is specified to represent the effect of the inertial forces imposed by the earthquake upon the potential failure mass. A factor of safety is defined in the conventional manner as the ratio of the ultimate shear strength of the slope elements to the maximum shear stresses induced in those elements by seismic and static loadings. The peak ground acceleration at the site was determined using the 2010 National Building Code Seismic Hazard Calculator of Natural Resources Canada. The National Building Code peak ground acceleration at the site is 0.31 g.

With the selection of appropriate liner materials, the seismic slope stability analyses results suggested that the slope stability of the landfill and liner system can have an adequate factor of safety under seismic condition with the peak ground acceleration. Detailed assessment of stability of the landfill and liner system will be carried out using updated input parameters during the detailed design of the landfill to confirm that appropriate materials are selected and to ensure that adequate factor of safety is achieved.

Details of the analyses and results are presented in Appendix A.

3.2.6 Site Entrance and Roads

The site entrance for the new landfill will be located off Carp Road approximately 640 m south of Richardson Side Road as shown on Figure FCR-03. The entrance to the existing Ottawa WMF was deemed not ideal due to poor sight lines along Carp Road to the north, and close proximity to entrances of industrial operations on the east side of Carp Road. The proposed entrance location improves sight lines to the north, maintains adequate separation from the intersection of Richardson Side Road and Carp Road, and increases distance from the intersection of Carp Road and Highway 417.

The layout of site roads is shown in Figure FCR-03 and is summarized as follows:

- The main site entrance off Carp Road will accommodate waste haulage and construction traffic, as well as traffic related to public waste drop-off facility users (see Section 3.2.9).
- The length of the entrance roadway leading to the scale facility is approximately 400 m and will incorporate several inbound lanes. This configuration will provide ample truck queuing thus eliminating potential for queuing on Carp Road.
- The main waste haul road follows the east and south perimeters of the new footprint. The haul road will be developed progressively as required by landfill development. The entire length of entrance and haul roads outside the landfill footprint will be paved.
- A granular-surfaced maintenance/service road will be constructed progressively around the entire landfill perimeter.

3.2.7 Scale Facility

A new scale facility will be constructed immediately east of the new footprint. This is expected to incorporate two scale decks for inbound/outbound waste trucks. The scale operator will be located in scale house situated between the scale decks. By-pass lanes will be situated on both sides of the facility.

3.2.8 Office and Equipment Maintenance Facility

WM anticipates utilizing two existing structures on the Laurysen property as the new landfill office and equipment maintenance facility. The Laurysen office building can be converted into the new landfill office and its location provides good sightlines to the site entrance and east perimeter of the landfill.

3.2.9 Other WCEC Facilities

WM anticipates that the public recycling drop-off facility (including electronics recycling) and drop-off facility for used construction and renovation materials (a partnership with Habitat for Humanity) will continue to operate. A decision has not yet been taken whether these operations will continue in their existing location (e.g., near the existing landfill entrance) or whether new facilities will be constructed as part of the new footprint.

It is feasible to locate a new drop off facility in the lands between Carp Road and the eastern limit of the new landfill, and a concept for a grade-separated drop-off facility that would accommodate roll-off bins is shown in Figure FCR-03. Positive features of this concept include:

- Diversion activities are in clear sight of Carp Road which helps promote waste diversion to the public;
- The facility can be readily monitored by site staff given its close proximity to the proposed site office (Laurysen office);
- The capacity can be expanded southward if space for additional bins is required.

WM also intends to continue other diversion operations in the southwest corner of the WM property. The specifics of these operations have not yet been determined, but it is anticipated that these will be accessed via an extension of the new landfill waste haul road. A potential location for some of these operations is shown in Figure FCR-07.

4. Stormwater Management

Stormwater management for the expanded site will be achieved through integration of an existing and proposed system of ditches, culverts, storm sewers and ponds that have been designed to mitigate the impacts of stormwater runoff on water quantity and water quality before discharge. Relevant stormwater management criteria, as identified by MOE in Ontario Regulation 232/98 and related Landfill Standards Guidelines (1998), include:

- Ditching designed to accommodate runoff from a 1:25 year rainfall event;
- Detention of runoff from a 4-hour 25 mm rainfall event; and,
- Attenuation of peak flows to pre-development levels for all rainfall events up to and including the 1:100 year Return Period event.

The stormwater management system for the new landfill will be designed in a manner similar to the existing system reflecting that surface water runoff from the landfill footprint and immediately adjacent areas (e.g., final cover, haul roads) recharges to groundwater and does not directly discharge off-site. The proposed system is shown in Figure FCR-03 and is summarized as follows:

- A new stormwater management (SWM) pond will be situated within Depression #5 located near the northeast corner of the new footprint and will accommodate flow from the new landfill (once capped) and the perimeter maintenance/ service road.
- Two new SWM ponds will be situated within Depression #4 located near the southeast corner of the new footprint. The pond within the western portion of Depression #4 will accommodate flow from the new Waste Haul Road, and the pond in the eastern portion of Depression #4 will replace existing SWMF #1 and Depression #3 (which will be displaced by the new landfill).
- Each of the three new SWM ponds will be designed as two-stage facilities with flow control between the two stages.
- SWMF #2/Depression #1 and Depression #2 will continue to function as at present and are not influenced by drainage from the new landfill.

In each of the new ponds the first stage will be lined and will function not only as a sedimentation pond but also as a containment pond where runoff can be stored in the case of a spill or other emergency. The first stage pond will be designed to retain runoff from the 1:100 Year rainfall.

The second stage of each pond will be unlined to permit recharge to groundwater and will also be sized to accommodate the 1:100 Year runoff. Other design features are anticipated to include:

- The invert of the first stage will be higher than the invert of the second stage and higher than the design water level, to ensure positive drainage.
- The design water level will be for the 1:100 year rainfall event since the SWMF would have no natural positive outlet given the adjacent topography.
- The design water levels would not be higher than adjacent service roads.
- Emergency overflow routes will be defined during detailed design. With no positive outflow, the recharge rate governs the rate of water level reduction and available capacity for the next rainfall event, and it is possible that overflow conditions may be encountered.

Current estimates of runoff flows and volumes for the new SWM facilities are found in Table 4-1.

	Drainage Area (ha)	Q Peak-SCS	Volume (m ³)	
Location		1:25 yr (84 mm)	1:100 yr (107 mm)	1:100 yr
New Landfill – North SWMF	40.9	1.140	1.597	15663
Access Road – Southwest SWMF	3.3	0.770	1.026	2712
SWMF 1 (1+4) – Southeast SWMF	21.1	0.910	1.290	8073

Table 4-1:New SWM Facilities – Flow and Volume Estimates

Estimates of the volume of water that will infiltrate through the second stage (unlined portion) of each pond are provided in Table 4-2.

Table 4-2: New SWM Facilities – Infiltration Estimates from Second Stage of SWM Ponds

Location	Ratio of Runoff to Total Precipitation	Contributing Drainage Area (ha)	Annual Runoff Volume (m³)	Area of Base of Second Stage (unlined) WM Pond (m ²)	Annual Infiltration per Unit Area (mm/yr)
New Landfill – North SWMF	0.2	40.9	76,048	6,000	12,675
Access Road – Southwest SWMF	0.7	3.3	21,903	1,200	18,253
SWMF 1 (1+4) – Southeast SWMF	0.2	21.1	39,232	3,580	10,959

Fill or excavation will be carried out as required to control drainage and achieve positive grades to appropriate outlets and culverts/storm sewers will be installed, where needed, to convey flows under travelled sections of the site. During detailed design consideration will be given to combining the unlined ponds in Depression #4.

5. Leachate Management

5.1 Proposed Leachate Management System

5.1.1 Leachate Containment and Collection

WM intends to design the leachate control system for the site with the Generic II – Double Liner System as specified in Ontario Regulation 232/98, or MOE-approved equivalent. The Generic II system consists of following components (from top down):

- 0.3 m thick granular/perforated pipe primary leachate collection system (lcs);
- Minimum 0.75 m thick geomembrane/engineered clay composite primary liner;
- 0.3 m thick granular/perforated pipe secondary lcs;
- 0.75 m thick geomembrane/engineered clay composite secondary liner; and
- 1 m thick natural or constructed soil attenuation layer.

The Generic II design also includes suitable separator layers (geotextile or layer of graded granular material) between the waste and underlying primary lcs, and between granular layers and soil or liners.

For planning purposes it has been assumed that the landfill liner system would be developed in approximately eight stages with an area of 47,250 m² each. The size of liner development stages may be varied during more detailed design work. The layout of the liner stages is shown in Figure FCR-03 and a typical cross-section through the liner system is shown in Figure FCR-11.

The base grades for the landfill will be sloped to the northeast toward a single low point in the northeast corner of the footprint. The surface of the primary liner will be contoured as a 'washboard' surface oriented north-south. Piping for the primary lcs will be located in valleys between the washboard ridges and will convey leachate to a header pipe located along the north perimeter of the footprint, which will convey leachate to a pumping station in the northeast corner.

The secondary liner surface will also be sloped to the northeast, although the liner surface will be a smooth plane with no washboard contour. A pumping station for the secondary lcs will be located in the northeast corner.

Design contingencies such as a leachate recirculation system, double leachate header pipes and contingency pumping stations will be considered during detailed design.

The layout of the leachate collection systems is shown in Figures FCR-05 and FCR-06. A cross-section through the collection systems is shown in Figure FCR-11.

5.1.2 Final Cover

The final cover is part of the landfill's leachate control system and serves several functions including:

- Physical barrier between landfilled waste and the environment;
- Reduce infiltration into the landfill;
- Reduce the release of landfill gas to the atmosphere thus facilitating gas collection; and,
- Provide a platform for end use implementation.

Ontario Regulation 232/98 requires that landfills following the generic design approach incorporate a final cover which permits a minimum of 150 mm of infiltration annually. The proposed final cover consists of 0.6 m of compacted soil overlain by 0.15 m of vegetated soil and will be designed to permit a minimum of 150 mm of infiltration annually.

5.1.3 Leachate Treatment

Preferred Method

The preferred leachate treatment system for the new landfill consists of leachate pretreatment utilizing an SBR followed by disposal of leachate through discharge to the City of Ottawa sanitary sewer system. On a seasonal basis, pretreated leachate would also be disposed through irrigation of trees on-site.

The collected leachate is pretreated, as required, in order to meet the City of Ottawa Sewer Use By-law. The leachate effluent would then be discharged to an existing forcemain at Carp Road and Highway 417. The effluent would be further treated at the City's Robert O. Pickard Environmental Centre (ROPEC) facility.

Leachate would also be disposed on a seasonal basis through irrigation of poplar and/or willow trees on-site. The leachate may require partial or full on-site treatment using chemical and/or biological processes prior to irrigation. The treated leachate will be discharged to the tree plantation during days with suitable weather conditions. No liquid effluent would leave the WCEC site.

The implementation of sewer disposal and tree irrigation in tandem would allow for maximum operational flexibility at the WCEC. This leachate treatment system would provide for a standing contingency plan, should discharge to the City's sanitary sewer be interrupted for any reason; it would have no limitations with respect to seasonality; and the area required for the tree stand and associated storage pond would be much smaller than that required if tree irrigation was the only disposal method.

Contingency Method

As a contingency evaporator technology could be utilized to dispose of leachate. Leachate from the landfill would be pumped to an equalization tank that will provide storage to handle peaks in leachate generation. The leachate would then be fed to the evaporator for processing. The evaporator system may utilize landfill gas as the energy source to evaporate the leachate or waste heat from the landfill gas co-generation facility. Depending upon the strength of the leachate and the resulting air quality emissions, the leachate may have to be pretreated using a chemical and/or biological process prior to evaporation. These units have been widely used in the U.S. for a number of years for leachate disposal.

Emergency Method

In an emergency (e.g., if the preferred method were unavailable for a period of time) leachate could be trucked to one or more wastewater treatment plants (public or private) outside Ottawa for disposal. The collected leachate may require pretreatment using chemical and/or biological processes if required to meet the quality parameters of the receiving wastewater treatment plant(s). The specific location of such facilities will be subject to agreements and identified as part of the ECA process.

Potential locations for a leachate pretreatment system, tree plantation, as well as for the contingency evaporation system are shown on Figure FCR-07.

5.2 Estimated Leachate Generation Rates

Leachate generation rate is an important parameter used in assessing the operational and environmental performance of a landfill site. It will vary over the operational and post-closure period of the facility and is influenced by factors including precipitation, degree of landfill development, final cover design and state of construction, and other factors. Two cases were considered: a maximum generation rate during the operating period, and the generation rate after closure.

Leachate generation rates were estimated in two steps:

- Infiltration was estimated using the Hydrologic Evaluation of Landfill Performance (HELP) for a range of scenarios that will exist during the operating and postclosure period. For the purposes of this assessment changes in moisture storage within the landfill were assumed to be zero, and the estimated infiltration rate was considered representative of the leachate generation rate (e.g., infiltration = total precipitation – runoff – evapotranspiration = leachate generation rate).
- The generation rate was then estimated by applying the infiltration rate to the areas of the landfill that correspond to these scenarios.

The scenarios considered were as follows:

Newly Constructed Liner Stage

- Represents a newly-constructed liner stage prior to placement of any waste.
- Reflects that the primary leachate collection stone layer is exposed.
- All infiltration into the leachate collection layer is collected as leachate.

Daily Cover

- Represents waste covered by daily cover 0.15 m thick.
- Two soil types modelled to represent a range of soil that might be used for daily cover, with soil properties taken from the HELP model database:
 - sand, effective saturated $k = 5.8 \times 10^{-3} \text{ cm/s};$
 - moderately compacted silty clay, effective saturated $k = 1.2 \times 10^{-6}$ cm/s.
- Both cases modelled as bare soil with no vegetation.
- No runoff is permitted off the covered surface, which is consistent with WM's practice of utilizing impacted soils from the waste stream for daily cover.

Interim Cover

- Represents waste covered by an interim cover 0.30 m thick.
- Two soil types modelled with the same material properties as modelled for daily cover (sand, and moderately compacted silty clay).
- Both cases modelled with a fair stand of grass.
- Two cases modelled for each soil type:
 - no runoff is permitted off the covered surface;
 - runoff permitted from a cover constructed from clean soil, 4H to 1V exterior slope.

Final Cover

- Represents waste following application of final cover.
- Two cases considered representing reasonable minimum/maximum infiltration rates:
 - a minimum infiltration rate of 150 mm/year as specified for the Generic II design in Ontario Regulation 232/98,
 - a reasonable maximum infiltration rate, reflecting a cover as follows:
 - 0.15 m thick vegetated soil layer, effective saturated
 - $k = 5.2 \times 10^{-4}$ cm/s taken from the HELP model database;
 - a barrier layer constructed from gravelly sands that exist on site, measured saturated $k = 3.8 \times 10^{-2}$ cm/s.
 - Assumes that runoff occurs from the cover sloped at 5%.

The estimated infiltration rates for these scenarios are summarized in Table 5-1.

Condition	Newly Constructed	Daily	Cover		Inter	im Cover		Fi	nal Cover
Description	No waste	Sand cover	Silty clay	Sand cover	Silty clay	Sand cover	Silty clay cover	Gravely	Minimum infiltration
	placed, LCS	0.15 m	cover (mod.	0.3 m thick,	cover (mod.	0.3 m thick, w/	(mod. comp.)	sandy soil	permitted through
	exposed.	thick, no	Comp.)	no runoff.	comp.)	runoff from	0.3 m thick, w/	(local).	the final cover for an
		runoff.	0.15 m thick,		0.3 m thick,	4H to 1V ext.	runoff from 4H		Ont. Reg. 232/98
			no runoff.		no runoff.	slope.	to 1V ext. slope.		generic design.
Average Annual Leachate Generation (mm)	546	448	332	474	334	237	21	218	150

 Table 5-1:
 Leachate Generation for Various Landfill Operating Conditions

The approximate maximum leachate generation rate during the landfill operating period is estimated to be 5.1 L/s (annual average) based on the following:

- 1. Liner stages 1 through 7 have been landfilled to an elevation of approximately 141.5 m (e.g., approaching end of Phase I operations as shown in Figure FCR-08) and covered with interim cover. To be conservative it was assumed that the cover was constructed from sand rather than compacted silty clay.
- 2. The infiltration rate for 'interim sand cover, 0.3 m thick, no runoff', was applied to the interior 'flat' area of Stages 1-7, estimated to be 237,000 m².
- 3. The infiltration rate for 'interim sand cover, 0.3 m thick, w/ runoff from external 4H to 1V slopes' was applied to the area of the external slopes of Stages 1-7, estimated to be 94,000 m².
- 4. The infiltration rate for 'no waste, Ics exposed' was applied to the area of Stage 8 (approximately 47,000 m²), reflecting landfilling has just commenced in Stage 8, but essentially entire Stage 8 Ics is exposed.

The maximum leachate generation rate was estimated using conservative assumptions. WM will manage landfill operations to minimize leachate generation. WM will also implement leachate treatment capacity, as required, to manage the leachate generated.

The long-term leachate generation rate reflecting that final cover has been applied to the entire site is estimated to range from 1.8 L/s to 2.7 L/s (annual average). This corresponds to a final cover that permits 150 mm infiltration (e.g., Ontario Regulation 232/98 generic minimum) or 226 mm infiltration (gravely sand final cover) respectively.

Additional information on the HELP modelling, including model input/output summaries for the scenarios examined is presented in Appendix B.

5.3 Assessment of Potential Contaminant Flux through Base Liner System

The detailed hydrogeologic impact assessment will examine potential groundwater quality impacts from the entire WCEC site which includes the new landfill as well as the partially-lined existing landfill. To support the hydrogeologic impact assessment an estimation of potential contaminant migration through the base liner system of the new landfill was prepared and is presented herein.

Numerical analysis was carried out using POLLUTE Version 7.14 to estimate the contaminant concentration at the base of the liner system over time. The POLLUTE model is a well-tested contaminant migration analysis program, and scenarios that can be considered range from simple systems on a natural clayey aquitard to landfill designs with composite liners, multiple barriers, and multiple aquifers.

The model was set up reflecting that the new landfill will incorporate an Ontario Regulation 232/98 G II design. As required by the regulation, the service life of the liner and Ics was considered in the assessment. The primary leachate collection system, and the geomembrane layer of the primary and secondary composite liners were assumed to fail to function at the end of their service lives which are reflected in the Regulation as being 100 years, 150 years and 350 years, respectively.

The leachate parameters used in the model were the same as those selected as the indicator parameters for the hydrogeological impact assessment. Average concentrations of leachate samples collected at the existing Ottawa WMF landfill up to May 2011 were used as shown in Table 5-2.

Table 5-2:	Leachate Concentrations Used	d As Input to the POLLUTE Model
	Ecacitate Concentrations 03ce	

Indicator Parameters	Average Concentrations (mg/L)
Ammonia	1,408
Chloride	2,911
Potassium	1,078
Sodium	2,800
Trichloroethylene	0.003

Note: Concentrations of Trichloroethylene in the samples were reported to be below the detection limit. The average concentration was based on at half of the detection limits.

The model was used to calculate the migration of leachate through the landfill liner system based on infiltration through the final cover after closure using the Hydrologic Evaluation of Landfill Performance (HELP) model. The details of the estimation of the infiltration by the HELP model are described in Section 5.2 of this report. The final cover was assumed to be the more permeable of the two final cover cases considered (e.g., gravelly sand, average annual infiltration of 218 mm).

The maximum concentration at the base of the liner system for each indicator parameter was calculated by the POLLUTE model for two cases: no leachate recirculation, or with recirculation reflecting that collected leachate is added back to the waste mass to provide moisture to enhance biodegradation but without saturating the waste. For the Leachate Recirculation Case, a recirculation rate of 100 mm/a for 50 years was assumed. The model results for both cases model are summarized in Table 5-3.

Indicator Parameters	Maximum Concentrations at the Base of the Liner System, mg/L (No Recirculation)	Maximum Concentrations at the Base of the Liner System, mg/L (Leachate Recirculation)
Ammonia	0.046	0.057
Chloride	114	165
Potassium	3.1	5.2
Sodium	79	114
Trichloroethylene	3 x 10 ⁻⁵	3 x 10 ⁻⁵

Table 5-3:	Results of	the POLL	UTE Model

Additional discussion of the results as well as sensitivity analyses are presented in Appendix C.

6. Gas Management

6.1 **Proposed Landfill Gas Controls**

In accordance with Ontario Regulation 232/98, the new landfill will incorporate an active gas collection system. The design of the system will be developed during EPA–level work, and is anticipated to consist of the following features:

- Active gas collection will start within several years of commencement of waste placement to ensure that landfill odour is controlled. Perforated horizontal collectors will be installed in the landfill as filling progresses.
- Horizontal collector spacing will be determined as filling progresses. Typical spacing may consist of the following:
 - 2 levels of horizontal collectors; one level at approximately 8 m from the landfill base, and the second approximately 16 m from the base;
 - Horizontal spacing between collectors may be approximately 20-30 m;
 - Spacing (vertical or horizontal) would be adjusted as required based on site conditions.
- Leachate collection system piping may be used as additional gas collection points, if required.
- Vertical wells will be installed once the fill thickness is sufficient. Typical well to well spacing may be 60 m but will be adjusted as required based on actual site conditions.
- WM wishes to maximize the beneficial use of the landfill gas. Collected gas will be piped to the existing power generation facility or the flaring facility as required. These facilities would be modified as required to accommodate actual gas flows from the new footprint.

6.2 Assessment of Landfill Gas Generation

Landfill gas is generated when organic matter in the waste decomposes. The rate of landfill gas generation will depend on the amount of waste deposited in the landfill and properties of the waste including moisture content, pH, temperature, type and composition, and nutrients for micro-organisms that break down the waste.

The U.S. EPA Landfill Gas Emissions Model (LandGEM), Version 3.02, was used to estimate generation rates for the new landfill. The model is based on a first-order decomposition rate equation for estimating emissions from the decomposition of landfilled waste in municipal solid waste landfills.

Landfill gas generation rates were estimated based on an annual waste disposal rate of 400,000 tonnes over 10 years.

Two key input parameters in LandGEM are the Methane Generation Rate (k) and the Potential Methane Generation Capacity (Lo). LandGEM provides default values of k and Lo of 0.04 year⁻¹ and 100 m³/Mg respectively for *Conventional* landfills. Default values are also available for *Arid* type landfills (e.g., sites located in areas that receive less than 635 mm (25 inches) of rainfall per year) but are not considered representative for the WM site. The United States *Clean Air Act* (*CAA*) also identifies default k and Lo values of 0.05 year⁻¹ and 170 m³/Mg respectively.

The LandGEM Conventional and CAA default values were both used to model landfill gas generation rates. The results indicate estimated peak total landfill gas generation rates of 26 million m³/year (1,800 cfm) and 54 million m³/year (3,600 cfm) based on the LandGEM Conventional and CAA default k and Lo values respectively. The model results also indicate that the peak generation rates will occur in one to two years after the end of landfilling. For impact assessment purposes these estimates are considered to define a reasonable range for the new landfill based on the following:

- 635 mm annual precipitation is used by LandGEM to differentiate between *Conventional* and *Arid* landfill types. The annual precipitation at the WM site is more than 900 mm which suggests that using LandGEM *Conventional* default values may underestimate gas generation for the WM site.
- CAA default values have been found to over-estimate gas generation rates for typical MSW landfills in eastern Canada and northeastern United States and thus are considered be an upper limit for the WM site.

Additional information related to the landfill gas generation assessment is provided in Appendix D.

7. Development and Operations

7.1 Sequence of Landfill Development

The anticipated landfill development sequence is shown in Figures FCR-08, FCR-09, and FCR-10, and can be summarized as follows:

- Liner Stages 1 and 2 as well as the new site entrance and roads, scale facility, and SWM ponds would be constructed prior to commencement of waste receipt.
- Liner Stages 3 through 8 will be constructed as required by waste receipts. Waste placement will generally occur in two Phases. Phase 1 reflects filling sequentially from Stages 1 to 8 in an overall east to west direction to an elevation of approximately 141.5 mASL. This elevation provides a minimum working surface of approximately 1 ha over the first liner stage, which WM requires for landfill operations. Depending on site specific conditions during operations, WM may periodically choose to fill above elevation 141.5 mASL in Phase 1 (e.g., co-ordination of filling with progress of liner construction).
- In Stage 2, filling will progress east to west between elevation 141.5 mASL and final design contours.
- Final cover construction would commence after waste filling has reached final design contours.

7.2 Site Materials Balance

The new landfill construction will utilize both on-site and imported materials. The soils balance relating to preparatory earthworks is summarized in Table 7-1.

Earthworks (base grading, perimeter berms, roads, SWM Ponds), All Stages	Volume (m ³)
Base Grading Cut	340,000
Base Grading Fill	55,000
Base Grading Surplus	285,000
Fill Required for Perimeter Berms, Roads, and SWM Ponds	570,000
Granular and Asphalt for Surfacing of Roads	48,000
Net Imported Fill	333,000

Table 7-1:	Earthworks	Balance
------------	------------	---------

The base liner, leachate collection system, and final cover will be constructed from imported materials as summarized in Table 7-2.

Table 7-2: Base Liner, Leachate Collection System, and Final Cover Volumes

Component	Volume (m ³)
Attenuation Layer (1 m)	378,000 m ³
Secondary Clay Liner (0.75 m)	284,000 m ³
Secondary Leachate Collection System (0.3 m)	113,000 m ³
Primary Clay Liner (variable thickness to create washboard contour, min 0.75 m)	364,000 m ³
Primary Leachate Collection System (0.3 m)	113,000 m ³
Final Cover (barrier layer 0.6 m)	227,000 m ³
Vegetated Soil (0.15 m)	57,000 m ³
Total	1,536,000 m ³

Soils received as part of the waste stream that will be used as daily cover are not reflected in Table 7-1 or 7-2. The daily cover requirement has been estimated at approximately 920,000 m³ (see Section 3.1.2).

7.3 Traffic Associated with Landfill Construction and Operation

Truck traffic associated with the landfill operation includes trucks hauling waste to the site as well as haulage of construction materials for base grading earthworks, liner, leachate collection system and final cover construction.

WM conducted a traffic analysis for 2005 operating conditions at the existing Ottawa WMF. Landfill operations in 2005 reflected peak activity at the site and is viewed as being conservative relative to the proposed landfill operation. The traffic analysis reflected:

- Between 180 to 230 waste loads per day;
- 25 to 35 trips per AM peak hour;
- 25 to 50 trips per PM peak hour; and,
- One load corresponds to two trips: load in, empty out.

It is recognized that there will be traffic associated with ancillary WCEC facilities including the public waste drop off facilities and waste diversion operations. Estimated traffic movements for these operations are presented under separate cover.

Traffic will also be generated by importing construction materials. Imported material volumes were converted to trips per hour based on a truck capacity equivalent to 10 m³ of soil/granular in situ, and haulage occurring over a construction season lasting 9 months, 25 working days per month and 10 hours per day.

The proposed site development sequence results in the traffic scenarios as presented in Table 7-3.

 Table 7-3:
 Traffic Scenarios Based on Proposed Development Sequence

1.	 Site Preparation Prior to Landfilling Construction of preparatory earthworks (roads, perimeter berm, SWM ponds), and Stage 1 & 2 base liner and lcs (45 trips per hour); Waste haulage has not commenced. 	Up to 45 trips/hour
2.	 Routine Phase 1 Operations Landfilling in progress (assume max observed during 2005 WMF operations, 50 trips/hour); Construction of any one of Stages 3 to 8 (range of 14 to 23 trips/hour, assume max of 23 trips/hour); No final cover construction. 	Up to 73 trips/hour
3.	 Routine Phase 2 Operations All liner stages have been constructed; Landfilling in progress (assume max observed during 2005 WMF operations, 50 trips/hour); Final cover construction has not yet commenced. 	Up to 50 trips/hour
4.	 Phase 2 Operations Approaching Closure Landfilling in progress (assume max observed during 2005 WMF operations, 50 trips/hour); Final cover construction over half of site footprint (13 trips/hour). 	Up to 63 trips/hour

Appendix E presents the basis of the predicted traffic levels associated with construction activities.

7.4 **Operational Characteristics**

7.4.1 Landfill Operations

Ontario Regulation 232/98 requires the landfill be designed and operated to ensure that nuisance impacts are minimized, and the regulation requires that the proponent prepare a report describing all aspects of the operation as well as maintenance procedures that will be followed. The detailed Design and Operating Plan will be prepared as part of EPA-level work.

Daily operations will be planned such that:

- The size of the working face is kept to a minimum in order to minimize the area of exposed waste;
- Working face location is adjusted as required and seasonally to provide shelter from prevailing winds;
- Berms are constructed as required to attenuate visual and noise impacts;
- Portable litter fences are routinely used around the working face to capture blowing litter;

- Waste compaction commences immediately after placement and spreading;
- Cover material is readily available and the working face is fully covered at the end of each operating day; and,
- A comprehensive monitoring and maintenance program is implemented which addresses all aspects of the landfill operation. This includes a routine waste inspection program and monitoring for landfill odour.

•

7.4.2 Site Staffing

The operation of the new landfill is anticipated to require the following staff roles:

- District Management;
- Scale House attendants;
- administrative staff;

7.4.3 Equipment

The operation of the new landfill is anticipated to require the following equipment:

• 2 x Cat 836 compactors;

• 2 x Cat 300 rock trucks;

2 x Cat 330 excavators;

- 2 x Cat D7 dozers;
- 1 x Cat D6 dozer;
- 1 x Grader;

labourers;

- 1 x pickup truck; and,
- 1 x New Holland Loader (watering for dust control, sweeping, snow removal).

heavy and light equipment operators.

Equipment may consist of either the noted make/model or equivalent from different manufacturers.

8. Site Closure and End Use

Site closure will follow the completion of the landfill to the approved final contours. Closure activities include final cover construction, removal of roads and waste receipt facilities that are not required in the post closure period, and implementation of a long-term monitoring and maintenance program. The closure plan will be developed as part of EPA-level work.

Site end use will be determined by WM in consultation with the local community and other stakeholders through the EPA approvals process. Potential end uses may include public open space (e.g., park) that could accommodate various passive or active recreational activities, or a restricted access open space.

Ongoing landfill monitoring and maintenance requirements will need to be incorporated into End Use planning. Specific considerations will include but are not limited to:

- Access to leachate and gas control systems for ongoing operations, maintenance and monitoring;
- Access to environmental monitoring locations;
- Prevention of public access to operational or monitoring areas; and,
- Impact of potential end use activities on the site's leachate, gas, or surface water controls.

Figures

FILE

P:\60191228\000-CADD\040 CADD-BIM WIP\FCR_EA-FINAL-SUB-AUGUST-2012\60191228-FIC-11-Sections.dwg Layout:Facility-layout Plotted: Aug 31, 2012 🕲 9:18am by Lefebvrej

Appendix A

Seismic Slope Stability Analysis

Appendix A. Seismic Slope Stability Analysis

1. Purpose

The purpose of the slope stability analyses presented in this appendix is to assess the potential effect of ground motion due to seismic activity on the slope stability of the landfill and liner system of the proposed new landfill at the West Carlton Environmental Centre (WCEC). The site is located on Lots 3 and 4, Concession 3 in the former Township of Huntley, formerly in the Township of West Carleton, now the City of Ottawa near the intersection of Carp Road and Highway 417.

2. Background

Unlike plate boundary regions where the rate and size of seismic activity is directly correlated with plate interaction, eastern Canada is part of the stable interior of the North American Plate. Seismic activity in areas like these seems to be related to the regional stress fields, with the earthquakes concentrated in regions of crustal weakness. In the Western Quebec Seismic Zone, pattern of historical seismic activity recorded by the Canadian seismograph network since the beginning of the century shows the earthquakes concentrating in two sub-zones: one along the Ottawa River and a second along a more active Montreal-Maniwaki axis. (Natural Resources Canada, 2011a)

The damage potential of an earthquake is determined by how the ground moves. Expected ground motion can be calculated on the basis of probability, and the expected ground motions are referred to as seismic hazard. The seismic hazard at a given site is determined from numerous factors. Canada has been divided into earthquake source regions based on past earthquake activity and tectonic structure. The relationship between earthquake magnitude and the average rate of occurrence for each region is weighed, along with variations in the attenuation of ground motion with distance. In calculating seismic hazard, scientists consider all earthquake source regions within a relevant distance of the proposed site (Natural Resources Canada, 2011b).

Ground motion probability values are given in terms of probable exceedance, that is the likelihood of a given horizontal acceleration or velocity being exceeded during a particular period. The probability used in the 2010 National Building Code of Canada is 0.000404 per annum, equivalent to a 2-per-cent probability of exceedance over 50 years. This means that over a 50-year period there is a 2-per-cent chance of an earthquake causing ground motion greater than the given expected value.

3. Methodology

A conventional method to evaluate the slope stability of municipal solid waste landfill is the pseudo-static factor of safety approach (US EAP, 1995). In this method, a seismic coefficient is specified to represent the effect of the inertial forces imposed by the earthquake upon the potential failure mass and a factor of safety is defined in the conventional manner as the ratio of the ultimate shear strength of the slope elements to the maximum shear stresses induced in those elements by seismic and static loadings.

The computer software SLOPE/W (version 2007), developed by GEO-SLOPE International, was used to perform the slope stability assessment. GEO-SLOPE software is used in more than 100 countries. SLOPE/W, in one form, or another has been used since 1977. SLOPE/W was the very first geotechnical software product available commercially for analyzing slope stability. The initial code was developed by Professor D.G. Fredlund at the University of Saskatchewan. Currently, thousands of professionals both in education and in practice used the software (GEO-SLOPE, 2007).

4. Model Input Parameters

The peak ground acceleration at the site was determined using the 2010 National Building Code Seismic Hazard Calculator of Natural Resources Canada. The National Building Code peak ground acceleration at the site is 0.31 g. To examine the effect of seismic hazard on the slope stability of the landfill the peak ground acceleration was used in the SLOPE/W pseudo-static analysis.

The geometry of the landfill in the slope stability analyses was according to the Figures FCR-3 and FCR-10 in the Facility Characteristics Report. The slope of the landfill at the northeast corner adjacent to the proposed surface water ponds is the highest and was used in the analysis.

The typical configuration of the landfill liner system is shown in Figure FCR-11 in the Facility Characteristics Report. There are many layers and interfaces of adjacent layers. The shear of the weakest interface may govern the stability of the slope. The strength of the layers and interfaces depend on the specific materials selected for each of the components. Published data was used in this preliminary slope stability analysis and the input parameters are presented in the attached Table SS1. In the detailed design of the landfill, the stability assessment will be based on properties and strength of the materials selected for the liner system.

If the composite liner has a smooth geomembrane, the shear strength of its interface is generally lowest and is the critical interface on slope stability. The liner system is modelled in the slope stability analyses as two layers. The top layer represents the primary leachate collection system plus the geotextile and geomembrane directly beneath. The strength of this

layer is assumed to be controlled by the critical interface. The rest of the liner system below is modelled as another layer.

The key input parameters to SLOPE/W are presented in Table SS1. For a liner system with a smooth geomembrane, the critical interface shear strength is assumed to be 8 degrees based on published data. Sensitivity analyses were carried assuming the strength is increased by 50% to 12 degrees which also corresponds to published specific value from a manufacturer. The strength of the waste was based on values established by Sukhmander, Singh, and Murphy using results of laboratory testing, back-calculations from field load test and performance records, and in situ testing (Singh and Murphy, 1990). The effect of variation on the waste strength on the results was examined in sensitivity analyses for the smooth geomembrane cases. Slope stability analyses were performed with and without seismic condition.

Slope stability analyses, with and without seismic condition, were also performed for a liner system with a textured geomembrane instead of a smooth membrane. Textured geomembrane generally has a significantly higher interface shear strength than smooth geomembrane. The critical interface friction angle that gave a slope stability factor of safety greater than 1.0 under seismic condition was determined by back-calculations. In the above cases, the critical slip surface was determined by SLOPE/W as a composite slip surface. Additional cases were analyzed for the critical slip surface being circular as in conventional rotational analyses.

5. Results of Slope Stability Analyses

The results of SLOPE/W are summarised in the attached Table SS2, figures showing the critical slip surface and the corresponding calculated factor of safety for each case, and the plots of results of the sensitivity analyses.

The results showed that the factor of safety on slope stability is lower when the effect of seismic hazard is considered (see attached Table SS2). The seismic condition is based on the peak ground acceleration at the site according to the 2010 National Building Code. For a smooth geomembrane the calculated factors of safety under seismic condition were generally less than half of the corresponding results without seismic loading (Cases PD2A and PD2B versus Case PD1). Similar differences were found for the cases with a textured geomembrane as shown in Table SS2 (Case PD4B versus Case PD3, and Case PS2Bversus Case PS1).

With a smooth geomembrane, the calculated factors of safety under seismic condition were all well below 1.0 for the ranges of input parameters considered. These pseudo-static analyses results suggested that the calculated factor of safety on slope stability under the seismic condition for a liner system with a smooth geomembrane at the critical slip surface is inadequate. The results are summarized in Cases PD2A and PD2B in Table SS2 and in the plots of the sensitivity analyses results.

For the scenarios considered, Cases PD4A, PD4B, PS2A and PS2B, the back-calculations suggested that under seismic condition, the critical interface shear strength has to be approximately 25 degrees or greater for a calculated factor of safety above 1.0.

6. Discussion and Conclusions

Published generalized friction angle of texture HDPE geomembrane with non-woven, needlepunched or heat-bonded, geotextile showed values between 28 to 32 degrees (Koerner, 2005). The data by Koerner also suggested that the interface fraction between a texture HDPE geomembrane and soil could also be over 25 degrees. Furthermore, the use of peak ground acceleration with a pseudo-static factor of safety of 1.0 has been shown to give conservative assessments of slope performance in earthquakes (US EPA, 1995). With the selection of appropriate liner materials, the seismic slope stability analyses results suggested that the slope stability of the landfill and liner system can have adequate factor of safety under seismic condition with peak ground acceleration up to 0.31 g. This value of 0.31 g corresponds to the peak ground acceleration at the site for an earthquake with probability of exceedance of 2-percent over 50 years according to the 2010 National Building Code.

Detailed assessment of stability of the landfill and liner system shall be carried out using updated input parameters in the detailed design of the landfill to confirm that appropriate materials are selected and ensure that adequate factor of safety is achieved.

7. References

GEO-SLOPE International Ltd., 2007: Stability Modelling with SLOPE/W 200, An Engineering Methodology, 2nd Edition, May 2007. Koerner, R.M, 2005: Designing with Geosynthetics, 5th Edition, Pearson Prentice Hall. Natural Resources Canada, 2011a: Earthquake Zones in Eastern Canada, Date Modified 2011-11-07 http://earthquakescanada.nrcan.gc.ca/zones/eastcan-eng.php#WQSZ Natural Resources Canada, 2011b: Seismic hazard Calculations, Date Modified 2011-11-07 http://earthquakescanada.nrcan.gc.ca/hazard-alea/zoning-zonage/haz-eng.php Singh, S. and Murphy. B.J., 1990: Evaluation of the Stability of Sanitary Landfills in "Geotechnical of Waste Fills - Theory and Practice", ASTM STP 1070, ASTM. United Stated Environmental Protection Agency (US EAP), 1995: RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. EPA/600/R-95/051 April 1995.

Name: Case PD1

Project Name: West Carleton Environmental Centre Project No.: 60242342 Task: Preliminary Seismic Slope Stability Analysis Date: Jan-2012

Sensitivity Analysis

Case PD1 (Critical Interface Friction Angle φ: 8 Degree)

Input Data								
Sensitivity Range	Corresponding "2- Waste" Cohension Value (kPa)	Corresponding "2-Waste" Phi Value (Degree)						
0	0	20						
0.25	5	22						
0.5	10	24						
0.75	15	26						
1	20	28						

P:\60242342\400-Technical Information & Discipline Work In Progress\410-T09-Site D&O WIP\Slope Stability Analysis\Preliminary Analysis\Output Files\WIP\60242342-Case PD and PS series.xlsxPD1-Sensitivity Analysis1/31/2012

Name: Case PD2A

Project Name: West Carleton Environmental Centre Project No.: 60242342 Task: Preliminary Seismic Slope Stability Analysis Date: Jan-2012

Sensitivity Analysis

Case PD2A

(Critical Interface Friction Angle ϕ : 8 Degree)

Input Data								
Sensitivity Range	Corresponding "2- Waste" Cohension Value (kPa)	Corresponding "2-Waste" Phi Value (Degree)						
0	0	20						
0.25	5	22						
0.5	10	24						
0.75	15	26						
1	20	28						

Name: Case PD2B

Project Name: West Carleton Environmental Centre Project No.: 60242342 Task: Preliminary Seismic Slope Stability Analysis Date: Jan-2012

Sensitivity Analysis

Case PD2B

(Critical Interface Friction Angle ϕ : 12 Degree)

Input Data								
Sensitivity Range	Corresponding "2- Waste" Cohension Value (kPa)	Corresponding "2-Waste" Phi Value (Degree)						
0	0	20						
0.25	5	22						
0.5	10	24						
0.75	15	26						
1	20	28						

P:\60242342\400-Technical Information & Discipline Work In Progress\410-T09-Site D&O WIP\Slope Stability Analysis\Preliminary Analysis\Output Files\WIP\60242342-Case PD and PS series.xlsxPD2B-Sensitivity Analysis1/31/2012

Name: Case PD3

Name: Case PD4A

Name: Case PD4B

.

.....

Name: Case PS2A

.....

Table SS1. Key Input Parameters

Project Name: West Carleton Environmental Centre Project Number: 60242342 Task: Preliminary Seismic Slope Stability Analyses Date: January 2012

	Preliminary		
Parameters	Values Assumed	Unit	Notes
Subgrade			Source - Alston Associates Inc Report Aug 2, 2011 "Preliminary Geotechnical Evaluation, Proposed New Landfill Mound, Waste Management, Carp, Ontatio (Revised)".
			The effective friction angle measured by direct shear test on a sample of the silty sand soil of 39° is higher than would be predicted on the basis of penetration index values measured by in situ testing (CPT and DCPT)
Friction Angle	35	degree	according to the report.
Cohesion	0	кРа	Density based on the initial water contents and dry densities before the direct
Density	16.5	kN/m ³	shear test on the sample of silty sand soil.
Liner System			The G2 liner system from the primary compacted clay liner down is modelled as a single unit.
Friction Angle	30	degree	
Cohesion	5	kPa	
Density	20	kN/m [°]	
Primary Leachate Collection System, Geotextile and Geomembrane			All the Interfaces from the bottom of the waste to top of the primary clay liner is modelled as a single unit. The shear strength of the weakest interface shall govern the shear strength of this unit. The interface shear strength will depend on the actual construction materials used.
Friction Angle (smooth HDPE)	8	degree	Geotextile/Geomembrane interface assumed critical. Generalized interface shear strength based on Robert Koerner "Design with Geosynthetics" 5th Edition, for a smooth High Density Polyethylene (HDPE) geomembrane and a non-woven needle-punched geotextile.
Friction Angle (textured HDPE)	25	degree	Critical interface depends on the actual construction materials used, and may be at a geotextile interface or a geomembrane interface. For the preliminary analysis, the assumed critical shear strength assumed is not less than those showed in Robert Koerner's book "Design with Geosynthetics" 5th Edition. The soil, geotextile and textured geomembrane shall be selected in the detailed design to ensure adequate factor of safety.
Cohesion	0	kPa	
Density	20	kN/m ³	
Waste			Assumed preliminary strength parameters based on Singh S and Murphy B, "Evaluation of the Stability of Sanitary Landfills" in "Geotechnical of Waste Fills – Theory and Practice"ASTM STP 1070, 1990.
Friction Angle	24, (20 to 28 sensitivity analysis)	degree	
Cohesion	10, (0 to 20 sensitivity analysis)	kPa	
Density	10	kN/m ³	
Final Cover			Strength based on generalized unconfined compression strength based on Karl Terzaghi and Ralph Peck "Soil Mechanics in Engineering Practice" 2nd Edition, for a clay with medium consistency .
Friction Angle	0	degree	
Cohesion	50	кРа	
Density	20	kN/m°	

Notes

2. The parameters and values will depend on the actual type of construction materials selected.

3. Dry condition was assumed for all cases.

^{1.} All these preliminary input parameters to be updated in the detailed design.

Table SS2: Summary of Slope Stability Results

Project Name: West Carleton Environmental Centre Project No.: 60191228 Task: Preliminary Seismic Slope Stability Analysis Date: Jan-2012

Summary of the Factor of Safety

	Results	Inputs							
Case ID	Factor of	Waste	Strength	Critical Interface	Soismic	Critical Slip			
	Safety	Cohesion C (kPa)	Friction Angle ø (degree)	(degree)	Gersnine	Surface Type			
PD1	1.576	10	24	8	No	Composite			
PD2A	0.541	10	24	8	0.31g (horz)	Composite			
PD2B	0.644	10	24	12	0.31g (horz)	Composite			
PD3	2.359	10	24	25	No	Composite			
PD4A	1.020	20	20	25	0.31g (horz)	Composite			
PD4B	1.005	10	24	25	0.31g (horz)	Composite			
PS1	2.526	10	24	25	No	Circular			
PS2A	1.105	20	20	25	0.31g (horz)	Circular			
PS2B	1.035	10	24	25	0.31g (horz)	Circular			

Notes:

1. Input parameters see Table SS1.

2. Critical Interface Friction Angles for Cases PD1, PD2A, and PD2B were assumed for a smooth geomembrane. A textured geomemi

3. Critical slip surfaces and calculation of Factor of Safety shown as attached.

4. Sensitivity analysis conducted for Cases PD1, PD2A, and PD2B, the plots of the results are shown as attached.

Appendix B

Leachate Generation Rate Estimation

Appendix B. Leachate Generation Rate Estimation

Background

HELP (Hydrologic Evaluation of Landfill Performance), is a quasi-two-dimensional hydrologic model for predicting landfill hydrologic processes, testing the effectiveness of landfill designs, and assessing groundwater recharge rates. The model uses the following input data:

- Weather (precipitation, temperature, solar radiation, evapotranspiration parameters).
- Soil (porosity, field capacity, wilting point, saturated hydraulic conductivity).
- Engineering design data (liners, leachate and runoff collection systems, surface slope).

The modeled system can be multi-layered, consisting of combinations of natural (i.e., soil) and artificial materials (i.e., geomembranes) with an option to install horizontal drainage and sloped layers (e.g., caps, surface drainage and removal systems). HELP uses numerical solution techniques that account for the effects of surface storage, snow melt, runoff, infiltration and evapo-transpiration, vegetation growth, soil moisture storage, lateral subsurface drainage, and unsaturated vertical drainage or leakage through soil geomembrane or composite liners.

For the preliminary evaluation of leachate generation rates, the implementation of HELP contained in the software WHI UnSat Suite Plus version 2.2.0.3 by Waterloo Hydrogeologic (now Shlumberger Water Services) was used. Specifically, the model was used to estimate infiltration into the new landfill for a range of scenarios that will exist during the operating and post-closure period. For the purposes of this assessment changes in moisture storage within the landfill were assumed to be zero, and the estimated infiltration rate was considered representative of the leachate generation rate (e.g. infiltration = total precipitation – runoff – evapotranspiration = leachate generation).

Model Parameters

Model input parameters included:

- Aspects of the conceptual design presented in the FCR (e.g., area, slope, waste thickness, liner and leachate collection system design),
- Weather data including precipitation, temperature, solar radiation and evapotranspiration as generated by HELP using coefficients for Ottawa and compared to Environment Canada data;

- Soil parameters including porosity, field capacity, and wilting point were taken from the default HELP model database; and,
- Saturated hydraulic conductivity values from the default HELP model database and using results of on-site soil investigations.

The specific scenarios are described in Section 5.2 of the main report.

Model Input/Output

The infiltration values for the modelled scenarios are presented in Table 5-1 in the main report. Summaries of the input data and model results for each scenario follow.

** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** HELP MODEL VERSION 3.07 (1 November 1997) ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ++ ++ FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** PRECIPITATION DATA FILE: C:\WHI\UNSAT22\data\P13364.VHP_weather1.dat TEMPERATURE DATA FILE: C:\WHI\UNSAT22\data\P13364.VHP_weather2.dat SOLAR RADIATION DATA FILE: C:\WHI\UNSAT22\data\P13364.VHP_weather3.dat C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat EVAPOTRANSPIRATION DATA: SOIL AND DESIGN DATA FILE: C:\WHI\UNSAT22\data\P13364.VHP\I_392374.inp OUTPUT DATA FILE: C:\WHI\UNSAT22\data\P13364.VHP\O_392374.prt TIME: 12:59 DATE: 7/12/2011 TITLE: No Waste *****

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 21 THICKNESS = 30.00 CM POROSITY 0.3970 VOL/VOL = FIELD CAPACITY = 0.0320 VOL/VOL WILTING POINT 0.0130 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.2154 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.30000000000 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 34 THICKNESS 0.60 CM = POROSITY 0.8500 VOL/VOL = FIELD CAPACITY = 0.0100 VOL/VOL WILTING POINT 0.0050 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.0123 VOL/VOL EFFECTIVE SAT. HYD. COND. = 33.0000000000 CM/SEC 0.50 PERCENT SLOPE = DRAINAGE LENGTH 225.0 METERS =

LAYER 3

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

THICKNESS	=		0.10	CN	1		
POROSITY	=		0.0000	VO	L/VOL	_	
FIELD CAPACITY	=		0.0000) V (DL/VO	L	
WILTING POINT	=		0.0000	VC	L/VO	L	
INITIAL SOIL WATER CONTE	NT	=	0.0	000	VOL	/VOL	
EFFECTIVE SAT. HYD. CONE).	= (0.20000)000	00000	E-12 C	M/SEC
FML PINHOLE DENSITY		=	2.00		HOLE	S/HEC	TARE
FML INSTALLATION DEFECT	S	=	2.0	00	HOL	ES/HE	CTARE
FML PLACEMENT QUALITY		=	4 - PO	OR			

LAYER 4

 $\begin{array}{rcl} \mbox{TYPE 3 - BARRIER SOIL LINER} & & & \\ \mbox{MATERIAL TEXTURE NUMBER 28} & & \\ \mbox{THICKNESS} & = & 75.00 & \mbox{CM} & \\ \mbox{POROSITY} & = & 0.4520 & \mbox{VOL/VOL} & \\ \mbox{FIELD CAPACITY} & = & 0.4110 & \mbox{VOL/VOL} & \\ \mbox{WILTING POINT} & = & 0.3110 & \mbox{VOL/VOL} & \\ \mbox{INITIAL SOIL WATER CONTENT} & = & 0.4520 & \mbox{VOL/VOL} & \\ \mbox{EFFECTIVE SAT. HYD. COND.} & = & 0.12000000000E-05 & \mbox{CM/SEC} & \\ \end{array}$

LAYER 5

TYPE 2 - LATERAL DRAINAGE LAYER							
MATERIAL TEXTURE NUMBER 20							
THICKNESS	=		0.50	CM			
POROSITY	=		0.8500	VOL/VO	L		
FIELD CAPACITY	=		0.0100	VOL/VC	C		
WILTING POINT	=		0.0050	VOL/VO)L		
INITIAL SOIL WATER CONTEN	ΝT	=	0.0	100 VOL	/VOL		
EFFECTIVE SAT. HYD. COND		=	10.000	0000000	0	CM/SEC	

LAYER 6

TYPE 2 - LATERAL DRAINAGE LAYER							
MATERIAL TEXTURE NUMBER 21							
THICKNESS	=		30.00	СМ			
POROSITY	=		0.3970	VOL/V	OL		
FIELD CAPACITY	=		0.0320	VOL/	/OL		
WILTING POINT	=		0.0130	VOL/V	'OL		
INITIAL SOIL WATER CONTEN	٦Γ	=	0.0	320 VC	DL/VOI		
EFFECTIVE SAT. HYD. COND		=	0.30000	00000	00	CM/SEC	

LAYER 7

TYPE 2 - LATERAL DRAINAGE LAYER							
MATERIAL TEXTURE NUMBER 20							
THICKNESS	=		0.50	CM			
POROSITY	=		0.8500	VOL/VOL			
FIELD CAPACITY	=		0.010	VOL/VOL			
WILTING POINT	=		0.0050	VOL/VOL			
INITIAL SOIL WATER CO	NTENT	=	0.0	0100 VOL/V	'OL		
EFFECTIVE SAT. HYD. C	OND.	=	10.000	0000000	CM/SEC		

LAYER 8

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 2

	EVIORE		۲ ۲
THICKNESS	=	37.00	CM
POROSITY	=	0.4370	VOL/VOL
FIELD CAPACITY	=	0.0620	VOL/VOL
WILTING POINT	=	0.0240	VOL/VOL

LAYER 9

TYPE 4 - FLEXIBLE MEMBRANE LINER						
MATERIAL TEXTU	RE N	UMBEF	२ ३५			
THICKNESS =		0.10	CM			
POROSITY =		0.0000	VOL/	/VOL		
FIELD CAPACITY =	=	0.0000	VOL	/VOL		
WILTING POINT =		0.0000	VOL	/VOL		
INITIAL SOIL WATER CONTENT	Γ =	0.0	000 \	/OL/VC)L	
EFFECTIVE SAT. HYD. COND.	=	0.20000	0000	000E-1	2 CM/S	EC
FML PINHOLE DENSITY	=	2.00	HC	OLES/⊦	IECTAF	RE
FML INSTALLATION DEFECTS	=	2.0)0 I	HOLES	HECT/	١RE
FML PLACEMENT QUALITY	=	4 - PO	OR			

LAYER 10

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 28							
THICKNESS	=		75.00	СМ			
POROSITY	=		0.4520	VOL/	VOL		
FIELD CAPACITY	=		0.4110	VOL	/VOL		
WILTING POINT	=		0.3110	VOL/	VOL		
INITIAL SOIL WATER CONTEN	TΝ	=	0.4	520 V	OL/VOL		
EFFECTIVE SAT. HYD. COND		=	0.12000	00000	000E-05	CM/SEC	

LAYER 11

TYPE 1 - VERTICAL PE	RCOLATION LAYER
MATERIAL TEXTUR	RENUMBER 9
THICKNESS =	100.00 CM
POROSITY =	0.5010 VOL/VOL
FIELD CAPACITY =	0.2840 VOL/VOL
WILTING POINT =	0.1350 VOL/VOL
INITIAL SOIL WATER CONTENT	= 0.2839 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.1900000000E-03 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #21 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 0.% AND A SLOPE LENGTH OF 30. METERS.

SCS RUNOFF CURVE NUMBER=0.30FRACTION OF AREA ALLOWING RUNOFF=0.0PERCENTAREA PROJECTED ON HORIZONTAL PLANE=1.0000 HECTARESEVAPORATIVE ZONE DEPTH=20.0CMINITIAL WATER IN EVAPORATIVE ZONE=6.032CMUPPER LIMIT OF EVAPORATIVE STORAGE=7.940CMLOWER LIMIT OF EVAPORATIVE STORAGE=0.260CMINITIAL SNOW WATER=3.716CMINITIAL WATER IN LAYER MATERIALS=105.930CMTOTAL INITIAL WATER=109.646CMTOTAL SUBSURFACE INFLOW=0.00MM/YR

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM Ottawa CANA

STATION LATITUDE	=	45.	32 D	EGREES	5
MAXIMUM LEAF AREA INDEX		=	4.0	0	
START OF GROWING SEASON (JULIAN	DA	TE)	=	123	
END OF GROWING SEASON (JULIAN DA	TE)	=	282	
EVAPORATIVE ZONE DEPTH		=	20.0) CM	
AVERAGE ANNUAL WIND SPEED		=	: 17	.70 KPH	
AVERAGE 1ST QUARTER RELATIVE HUI	MID	ITY	=	71.00 %	
AVERAGE 2ND QUARTER RELATIVE HU	MIE	DITY	´ =	66.00 %	
AVERAGE 3RD QUARTER RELATIVE HU	MIE	DITY	<pre>' =</pre>	73.00 %	
AVERAGE 4TH QUARTER RELATIVE HU	MIC	NTY	=	79.00 %	

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON

NORMAL MEAN MONTHLY PRECIPITATION (MM)

JAN/JUL	FEB/AUG	MAR/SEF	P APR/C	ОСТ	MAY/NOV	JUN/DEC
57.7	50.4	62.2	77.7	83.5	81.5	
76.8	95.0	82.4	87.3	83.7	84.3	

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES CELSIUS)

JAN/JUL	FEB/AUG	MAR/S	EP AF	PR/OCT	MAY/NOV	JUN/DEC
-10.5 21.2	 -8.3 19.6	 -2.4 14.2	6.4 7.7	13.3 1.0	17.9 -7.2	

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON AND STATION LATITUDE = 45.37 DEGREES

AVERAGE ANNUAL TOTAL	S & (STD. DEVIATI	ONS) FOR YEARS	1 THROUGH	20
	MM	CU. METERS	PERCENT	
PRECIPITATION	904.39 (104.0	63) 9044.0	100.00	
RUNOFF	0.000 (0.000	0) 0.00	0.000	
EVAPOTRANSPIRATION	358.237 (39	9.8094) 3582	.37 39.611	
LATERAL DRAINAGE COLLEC FROM LAYER 2	TED 547.77297	(94.21336) 54	177.730 60.567	89
PERCOLATION/LEAKAGE THE LAYER 4	OUGH 0.07897	'(0.02597)	0.790 0.00	873
AVERAGE HEAD ON TOP OF LAYER 3	9.281(3	.283)		
LATERAL DRAINAGE COLLEC FROM LAYER 8	TED 0.04914 (0.01318)	0.491 0.00543	3
PERCOLATION/LEAKAGE THF LAYER 10	OUGH 0.00830) (0.00204)	0.083 0.00	092
AVERAGE HEAD ON TOP OF LAYER 9	0.604 (0	.162)		
PERCOLATION/LEAKAGE THE LAYER 11	OUGH 0.00802	! (0.02468)	0.080 0.00	089
CHANGE IN WATER STORAGE	-1.672 (2.8234) -16	6.72 -0.185	
*****	******	*****		

PEAK DAILY VALUES FOR YEARS 1 THROUGH 20 and their dates (DDDYYYY) _____ (MM) (CU. METERS) PRECIPITATION 540.00000 1440012 54.00 RUNOFF 0.000 0.00000 0 DRAINAGE COLLECTED FROM LAYER 2 15.74062 157.40622 770002 PERCOLATION/LEAKAGE THROUGH LAYER 4 0.006391 0.06391 770002 AVERAGE HEAD ON TOP OF LAYER 3 305.995 MAXIMUM HEAD ON TOP OF LAYER 3 391.188 LOCATION OF MAXIMUM HEAD IN LAYER 2 (DISTANCE FROM DRAIN) 82.9 METERS DRAINAGE COLLECTED FROM LAYER 8 0.00021 0.00211 2440020 PERCOLATION/LEAKAGE THROUGH LAYER 10 0.000034 0.00034 2440020 AVERAGE HEAD ON TOP OF LAYER 9 0.946 MAXIMUM HEAD ON TOP OF LAYER 9 1.875 LOCATION OF MAXIMUM HEAD IN LAYER 8 2.0 METERS (DISTANCE FROM DRAIN) PERCOLATION/LEAKAGE THROUGH LAYER 11 0.080197 0.80197 1690020 SNOW WATER 236.91 2369.1375 730012 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.3970 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0130

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner

by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

FINAL WATER STORAGE AT END OF YEAR 20

	LAYER	(CM)	(VOL/VOL)
	1	5.8764	0.1959
	2	0.0076	0.0127
	3	0.0000	0.0000
	4	33.9000	0.4520
	5	0.0176	0.0352
	6	0.9600	0.0320
	7	0.0050	0.0100
	8	2.3284	0.0629
	9	0.0000	0.0000
	10	33.9000	0.4520
	11	28.3926	0.2839
	SNOW WAT	TER 0.913	
*****	*****	*****	*****

**	**
**	**
** HYDROLOGIC EVALUATION OF LANDFILL PERFORMA	NCE **
** HELP MODEL VERSION 3.07 (1 November 1997)	**
** DEVELOPED BY ENVIRONMENTAL LABORATORY	**
** USAE WATERWAYS EXPERIMENT STATION	**
** FOR USEPA RISK REDUCTION ENGINEERING LABORA	TORY **
**	**
**	**

 PRECIPITATION DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather1.dat

 TEMPERATURE DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather2.dat

 SOLAR RADIATION DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather3.dat

 EVAPOTRANSPIRATION DATA
 C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat

 SOIL AND DESIGN DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat

 OUTPUT DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_393060.inp

 OUTPUT DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP\0_393060.prt

TIME: 16:34 DATE: 7/15/2011

TITLE: Daily Cover - Sand

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 9 THICKNESS 15.00 CM = 0.4370 VOL/VOL POROSITY = FIELD CAPACITY 0.0620 VOL/VOL = WILTING POINT 0.0240 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.4364 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.5800000000E-02 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18 THICKNESS = 1800.00 CM 0.6710 VOL/VOL POROSITY = FIELD CAPACITY 0.2920 VOL/VOL = WILTING POINT 0.0770 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.2989 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.100000224000E-02 CM/SEC

LAYER 3

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20 THICKNESS = 0.50 CM
POROSITY	=		0.8500 VOL/VOL	
FIELD CAPACITY	=		0.0100 VOL/VOL	
WILTING POINT	=		0.0050 VOL/VOL	
INITIAL SOIL WATER CONTE	NT	=	0.1588 VOL/VC	L
EFFECTIVE SAT. HYD. COND	D.	=	10.0000000000	CM/SEC

TYPE 2 - LATERAL DRAINAGE LAYER								
MATERIAL TEXTU	JRI	E١	NUMBER	21				
THICKNESS :	=		30.00	CM				
POROSITY =	=		0.3970	VOL/\	/OL			
FIELD CAPACITY	=		0.0320	VOL/	VOL			
WILTING POINT :	=		0.0130	VOL/\	/OL			
INITIAL SOIL WATER CONTEN	Т	=	0.0	841 V	OL/VO	L		
EFFECTIVE SAT. HYD. COND.	:	=	0.30000	00000	000	CM/S	EC	

LAYER 5

TYPE 2 - LATERAL DRAINAGE LAYER									
MATERIAL TEXTU	MATERIAL TEXTURE NUMBER 34								
THICKNESS =	0.60 CM								
POROSITY =	0.8500 VOL/VOL								
FIELD CAPACITY =	= 0.0100 VOL/VOL								
WILTING POINT =	0.0050 VOL/VOL								
INITIAL SOIL WATER CONTENT	Γ = 0.3413 VOL/VOL								
EFFECTIVE SAT. HYD. COND.	= 33.000000000 CM/SEC								
SLOPE =	0.50 PERCENT								
DRAINAGE LENGTH	= 225.0 METERS								

LAYER 6

TYPE 4 - FLEXIBLE	MEM	BRANE	LINER		
MATERIAL TEXTU	IRE N	UMBER	35		
THICKNESS =		0.10	CM		
POROSITY =		0.0000	VOL/V	OL	
FIELD CAPACITY =	=	0.0000	VOL/\	/OL	
WILTING POINT =		0.0000	VOL/V	'OL	
INITIAL SOIL WATER CONTENT	Г =	0.0	000 VC	DL/VOL	
EFFECTIVE SAT. HYD. COND.	= (0.20000	00000	00E-12	CM/SEC
FML PINHOLE DENSITY	=	2.00	HOL	ES/HE	CTARE
FML INSTALLATION DEFECTS	=	2.0	00 H	OLES/H	ECTARE
FML PLACEMENT QUALITY	=	4 - PO	OR		

LAYER 7

TYPE 3 - BARRI MATERIAL TEXT	ER S TURE		L LINEF	र २ 28	l		
THICKNESS	=		75.00	СМ			
POROSITY	=		0.4520	VOL	/VOL		
FIELD CAPACITY	=		0.4110	VOL	/VOL		
WILTING POINT	=		0.3110	VOL	/VOL		
INITIAL SOIL WATER CONTE	NT	=	0.4	520 \	/OL/V	DL	
EFFECTIVE SAT. HYD. COND). =	=	0.12000	0000	000E-	05 CM	/SEC

LAYER 8

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 20THICKNESS=0.50CMPOROSITY=0.8500VOL/VOLFIELD CAPACITY=0.0100VOL/VOL

WILTING POINT =		0.0050 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.0100 VOL/VO	L
EFFECTIVE SAT. HYD. COND.	=	10.000000000	CM/SEC

LAYER 9 -----

TYPE 2 - LATERAL DRAINAGE LAYER									
MATERIAL TEXTU	IRE	NUMBEI	R 21						
THICKNESS =		30.00	CM						
POROSITY =		0.3970	VOL/VOL						
FIELD CAPACITY :	=	0.0320	O VOL/VOL	-					
WILTING POINT =		0.0130	VOL/VOL						
INITIAL SOIL WATER CONTEN	Г =	0.0)320 VOL/\	/OL					
EFFECTIVE SAT. HYD. COND.	=	0.30000	0000000	CM	/SEC				

LAYER 10

TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTURE NUMBER 20								
THICKNESS	=		0.50	CM				
POROSITY	=		0.8500	VOL/VO	L			
FIELD CAPACITY	=		0.0100	VOL/VC)L			
WILTING POINT	=		0.0050	VOL/VO	L			
INITIAL SOIL WATER CONTE	INT	=	0.0	100 VOL	/VOL			
EFFECTIVE SAT. HYD. CONI	D.	=	10.000	0000000		CM/SEC		

LAYER 11 -----

TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTU	RE	NUMBER	R 2		
THICKNESS =		37.00	CM		
POROSITY =		0.4370	VOL/	VOL	
FIELD CAPACITY =	•	0.0620	VOL	/VOL	
WILTING POINT =		0.0240	VOL/	VOL	
INITIAL SOIL WATER CONTENT	Γ =	= 0.0	620 V	OL/VO	L
EFFECTIVE SAT. HYD. COND.	=	0.58000	00000	000E-02	2 CM/SEC
SLOPE =		0.50 F	PERCI	ENT	
DRAINAGE LENGTH	=	225.0	M	ETERS	

LAYER 12

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

				```	50			
THICKNESS	=		0.10	CN	1			
POROSITY	=		0.0000	VO	L/VOI			
FIELD CAPACITY	=		0.0000	) V (	DL/VO	L		
WILTING POINT	=		0.0000	VC	)L/VO	L		
INITIAL SOIL WATER CONTEN	ΙT	=	0.0	000	VOL	/VOL		
EFFECTIVE SAT. HYD. COND.		= (	0.20000	)00(	00000	E-12	CM/S	EC
FML PINHOLE DENSITY	=	=	2.00		HOLE	S/HE	CTAR	E
FML INSTALLATION DEFECTS	3	=	2.0	00	HOL	ES/F	<b>IECT</b>	٨RE
FML PLACEMENT QUALITY		=	4 - PO	OR				

#### LAYER 13 -----

## TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 28 MATERIAL TEXTORE NOMBER28THICKNESS=75.00CMPOROSITY=0.4520VOL/VOLFIELD CAPACITY=0.4110VOL/VOLWILTING POINT=0.3110VOL/VOLINITIAL SOIL WATER CONTENT=0.4520VOL/VOL

TYPE 1 - VERTICAL PERCOLATION LAYER										
MATERIAL TEXTU	RE	NUMBER	8 9							
THICKNESS =		100.00	CM							
POROSITY =		0.5010	VOL/VOL							
FIELD CAPACITY =		0.2840	VOL/VOL							
WILTING POINT =		0.1350	VOL/VOL							
INITIAL SOIL WATER CONTENT		= 0.2	839 VOL/VOL							
EFFECTIVE SAT. HYD. COND.	=	0.19000	0000000E-03	CM/SEC						

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 9 WITH BARE GROUND CONDITIONS, A SURFACE SLOPE OF 5.% AND A SLOPE LENGTH OF 225. METERS.

SCS RUNOFF CURVE NUMBER=91.53FRACTION OF AREA ALLOWING RUNOFF=0.0PERCENTAREA PROJECTED ON HORIZONTAL PLANE=1.0000 HECTARESEVAPORATIVE ZONE DEPTH=20.0CMINITIAL WATER IN EVAPORATIVE STORAGE=9.910CMLOWER LIMIT OF EVAPORATIVE STORAGE=0.745CMINITIAL SNOW WATER=3.716CMINITIAL WATER IN LAYER MATERIALS=646.855CMTOTAL INITIAL WATER=650.571CMTOTAL SUBSURFACE INFLOW=0.00MM/YR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM Ottawa CANA

STATION LATITUDE	=	45.	32 D	EGREES
MAXIMUM LEAF AREA INDEX		=	4.00	)
START OF GROWING SEASON (JULIAN	DA	ΓE)	=	123
END OF GROWING SEASON (JULIAN DA	TE)	)	=	282
EVAPORATIVE ZONE DEPTH		=	20.0	) CM
AVERAGE ANNUAL WIND SPEED		=	: 17	.70 KPH
AVERAGE 1ST QUARTER RELATIVE HUI	MID	ITY	=	71.00 %
AVERAGE 2ND QUARTER RELATIVE HU	MIC	DITY	=	66.00 %
AVERAGE 3RD QUARTER RELATIVE HU	MIC	ЛТҮ	=	73.00 %
AVERAGE 4TH QUARTER RELATIVE HU	MID	ITY	=	79.00 %

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON

#### NORMAL MEAN MONTHLY PRECIPITATION (MM)

JAN/JUL	FEB/AUG	G MAR/SE	P APF	R/OCT	MAY/NOV	JUN/DEC
57.7	50.4	62.2	77.7	83.5	81.5	
76.8	95.0	82.4	87.3	83.7	84.3	

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON

## NORMAL MEAN MONTHLY TEMPERATURE (DEGREES CELSIUS)

JAN/JUL	FEB/AUG	MAR/S	EP API	R/OCT	MAY/NOV	JUN/DEC
-10.5	-8.3	-2.4	6.4	13.3	17.9	
21.2	19.6	14.2	7.7	1.0	-7.2	

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON AND STATION LATITUDE = 45.37 DEGREES ******

#### 

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 20							
	MM	CU. I	METERS	PERC	ENT		
PRECIPITATION	904.39 ( 1	104.063)	9044.0	100.00	)		
RUNOFF	0.000 (	0.0000)	0.00	0.000			
EVAPOTRANSPIRATION	455.956	( 50.5753)	4559.8	56 5	50.416		
LATERAL DRAINAGE COLLECT FROM LAYER 5	ED 456.45	5273 (105.740	987) 45	64.527	50.47051		
PERCOLATION/LEAKAGE THR LAYER 7	OUGH 0.0	)1227(0.00)	270)	0.123	0.00136		
AVERAGE HEAD ON TOP OF LAYER 6	0.982 (	0.228)					
LATERAL DRAINAGE COLLECT FROM LAYER 11	ED 0.00	831 ( 0.0019	96) (	0.083	0.00092		
PERCOLATION/LEAKAGE THR LAYER 13	OUGH 0.0	00173 ( 0.00	036)	0.017	0.00019		
AVERAGE HEAD ON TOP OF LAYER 12	0.102 (	0.024)					
PERCOLATION/LEAKAGE THR LAYER 14	OUGH 0.0	00000 ( 0.00	000)	0.000	0.00000		
CHANGE IN WATER STORAGE	-8.022	2 ( 3.0306)	-80.	22 ·	-0.887		

PEAK DAILY VALUES FOR YE	ARS 11	THROUGH	20	and thei	r dates (DDDYYYY)	)
	(MM)	(CU. ME	TERS)			
PRECIPITATION	54.00	54	0.00000	144001	2	
RUNOFF	0.000	0	.00000	0		
DRAINAGE COLLECTED FROM LAYER	5	4.77786	47	7.77863	1530016	
PERCOLATION/LEAKAGE THROUGH L	AYER 7	0.00011	18	0.00118	1530016	
AVERAGE HEAD ON TOP OF LAYER	6	3.771				
MAXIMUM HEAD ON TOP OF LAYER	6	7.338				
LOCATION OF MAXIMUM HEAD IN LAY (DISTANCE FROM DRAIN)	ER 5 6.1	METERS				
DRAINAGE COLLECTED FROM LAYER	11	0.00003	0	.00030	2550020	
PERCOLATION/LEAKAGE THROUGH L	AYER 13	0.00000	)6	0.00006	2550020	
AVERAGE HEAD ON TOP OF LAYER 12	2	0.137				
MAXIMUM HEAD ON TOP OF LAYER 12	2	0.273				
LOCATION OF MAXIMUM HEAD IN LAY (DISTANCE FROM DRAIN)	ER 11 0.4	METERS				
PERCOLATION/LEAKAGE THROUGH L	AYER 14	0.00000	00	0.00000	0	
SNOW WATER	236.91	1 23	369.1375	73001	2	

## MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0372

0.4955

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

******

	FINAL WATER STORAGE AT END OF YEAR								
	LAYER (CM) (VOL/VOL)								
	1	6.18	81	0.4125					
	2	525.47	89	0.2919					
	3	0.03	61	0.0721					
	4	2.24	31	0.0748					
	5	0.203	31	0.3385					
	6	0.00	00	0.0000					
	7	33.90	00	0.4520					
	8	0.00	50	0.0100					
	9	0.96	00	0.0320					
	10	0.00	50	0.0100					
	11	2.29	90	0.0621					
	12	0.00	00	0.0000					
	13	33.90	00	0.4520					
	14	28.39	55	0.2840					
	SNOW WATE	ĒR	0.913						
*****	*****	******	*****	*****	**				

***********	***************************************		
**********	***************************************		
**	**		
**	**		
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE		**
**	HELP MODEL VERSION 3.07 (1 November 1997)	**	
**	DEVELOPED BY ENVIRONMENTAL LABORATORY		**
**	USAE WATERWAYS EXPERIMENT STATION		**
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY		**
**	**		
**	**		
**********	***************************************		
**********	***************************************		

 PRECIPITATION DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather1.dat

 TEMPERATURE DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather2.dat

 SOLAR RADIATION DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather3.dat

 EVAPOTRANSPIRATION DATA
 C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat

 SOIL AND DESIGN DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat

 OUTPUT DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_393060.inp

 OUTPUT DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP\0_393060.prt

TIME: 15:3 DATE: 7/18/2011

TITLE: Daily Cover - Silty Clay

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

## LAYER 1

**TYPE 1 - VERTICAL PERCOLATION LAYER** MATERIAL TEXTURE NUMBER 9 THICKNESS 15.00 CM = 0.4520 VOL/VOL POROSITY = FIELD CAPACITY 0.4110 VOL/VOL = WILTING POINT 0.3110 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.4388 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.1200000000E-05 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

## LAYER 2

**TYPE 1 - VERTICAL PERCOLATION LAYER** MATERIAL TEXTURE NUMBER 18 THICKNESS = 1800.00 CM 0.6710 VOL/VOL POROSITY = FIELD CAPACITY 0.2920 VOL/VOL = WILTING POINT 0.0770 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.100000224000E-02 CM/SEC

## LAYER 3

#### TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20 THICKNESS = 0.50 CM

POROSITY	=	0.8500 VOL/VOL	
FIELD CAPACITY	=	0.0100 VOL/VOL	
WILTING POINT	=	0.0050 VOL/VOL	
INITIAL SOIL WATER CONTEN	= T/	0.0465 VOL/VO	)L
EFFECTIVE SAT. HYD. COND	. =	10.000000000	CM/SEC

TYPE 2 - LATERAL DRAINAGE LAYER							
MATERIAL TEXTU	RE I	NUMBEF	R 21				
THICKNESS =		30.00	СМ				
POROSITY =		0.3970	VOL/VOL				
FIELD CAPACITY =	:	0.0320	VOL/VOL				
WILTING POINT =		0.0130	VOL/VOL				
INITIAL SOIL WATER CONTENT	- =	0.0	521 VOL/VO	)L			
EFFECTIVE SAT. HYD. COND.	=	0.30000	0000000	CM/SEC			

LAYER 5

TYPE 2 - LATERAL DRAINAGE LAYER						
MATERIAL TEXTU	RE NUME	3ER 34				
THICKNESS =	0.60	) CM				
POROSITY =	0.85	00 VOL/VOL				
FIELD CAPACITY =	0.0	100 VOL/VO	L			
WILTING POINT =	0.00	50 VOL/VOL	_			
INITIAL SOIL WATER CONTENT	=	0.0221 VOL/	VOL			
EFFECTIVE SAT. HYD. COND.	= 33.0	000000000000000	CM/SEC			
SLOPE =	0.50	PERCENT				
DRAINAGE LENGTH	= 225	5.0 METE	RS			

## LAYER 6

TYPE 4 - FLEXIBLE MEMBRANE LINER							
MATERIAL TEXTU	IRE N	UMBER	35				
THICKNESS =		0.10	CM				
POROSITY =		0.0000	VOL/V	OL			
FIELD CAPACITY =	=	0.0000	VOL/\	/OL			
WILTING POINT =		0.0000	VOL/V	'OL			
INITIAL SOIL WATER CONTENT	Г =	0.0	000 VC	DL/VOL			
EFFECTIVE SAT. HYD. COND.	= (	0.20000	00000	00E-12	CM/SEC		
FML PINHOLE DENSITY	=	2.00	HOL	ES/HE	CTARE		
FML INSTALLATION DEFECTS	=	2.0	00 H	OLES/H	ECTARE		
FML PLACEMENT QUALITY	=	4 - PO	OR				

## LAYER 7

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 28								
THICKNESS	=		75.00	СМ				
POROSITY	=		0.4520	VOL	/VOL			
FIELD CAPACITY	=		0.4110	VOL	/VOL			
WILTING POINT	=		0.3110	VOL	/VOL			
INITIAL SOIL WATER CONTE	NT	=	0.4	520 \	/OL/V	DL		
EFFECTIVE SAT. HYD. COND	). =	=	0.12000	0000	000E-	05 CM	/SEC	

## LAYER 8

# TYPE 2 - LATERAL DRAINAGE LAYER<br/>MATERIAL TEXTURE NUMBER 20THICKNESS=0.50CMPOROSITY=0.8500VOL/VOLFIELD CAPACITY=0.0100VOL/VOL

WILTING POINT =		0.0050 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.0100 VOL/VO	L
EFFECTIVE SAT. HYD. COND.	=	10.000000000	CM/SEC

#### LAYER 9 -----

TYPE 2 - LATERAL	DRA	INAGE L	AYER		
MATERIAL TEXTU	IRE	NUMBEI	R 21		
THICKNESS =		30.00	CM		
POROSITY =		0.3970	VOL/VOL		
FIELD CAPACITY :	=	0.0320	O VOL/VOL	-	
WILTING POINT =		0.0130	VOL/VOL		
INITIAL SOIL WATER CONTEN	Г =	0.0	)320 VOL/\	/OL	
EFFECTIVE SAT. HYD. COND.	=	0.30000	0000000	CM	/SEC

## LAYER 10

-----

## TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTURE NUMBER 20							
THICKNESS	=		0.50	CM			
POROSITY	=		0.8500	VOL/VO	L		
FIELD CAPACITY	=		0.0100	VOL/VC	)L		
WILTING POINT	=		0.0050	VOL/VO	L		
INITIAL SOIL WATER CONTE	INT	=	0.0	100 VOL	/VOL		
EFFECTIVE SAT. HYD. CONI	D.	=	10.000	0000000		CM/SEC	

#### LAYER 11 -----

## TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTU	RE	NUMBER	R 2		
THICKNESS =		37.00	CM		
POROSITY =		0.4370	VOL/	VOL	
FIELD CAPACITY =	•	0.0620	VOL	/VOL	
WILTING POINT =		0.0240	VOL/	VOL	
INITIAL SOIL WATER CONTENT	Γ =	= 0.0	620 V	OL/VO	L
EFFECTIVE SAT. HYD. COND.	=	0.58000	00000	000E-02	2 CM/SEC
SLOPE =		0.50 F	PERCI	ENT	
DRAINAGE LENGTH	=	225.0	M	ETERS	

## LAYER 12

-----

## TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

				```	50			
THICKNESS	=		0.10	CN	1			
POROSITY	=		0.0000	VO	L/VOI			
FIELD CAPACITY	=		0.0000) V (DL/VO	L		
WILTING POINT	=		0.0000	VC)L/VO	L		
INITIAL SOIL WATER CONTEN	ΙT	=	0.0	000	VOL	/VOL		
EFFECTIVE SAT. HYD. COND.		= (0.20000)00(00000	E-12	CM/S	EC
FML PINHOLE DENSITY	=	=	2.00		HOLE	S/HE	CTAR	E
FML INSTALLATION DEFECTS	3	=	2.0	00	HOL	ES/F	IECT	٨RE
FML PLACEMENT QUALITY		=	4 - PO	OR				

LAYER 13 -----

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 28 MATERIAL TEXTORE NOMBER28THICKNESS=75.00CMPOROSITY=0.4520VOL/VOLFIELD CAPACITY=0.4110VOL/VOLWILTING POINT=0.3110VOL/VOLINITIAL SOIL WATER CONTENT=0.4520VOL/VOL

	TYPE 1 -				/ER	
THIC	KNESS		= 100	0.00 CM		
		=	= 0. - 0	.5010 VOL/	VOL	
WILT	NG POINT	:	= 0	.1350 VOL	VOL	
INITIA	L SOIL WAT	ER CONTEN	IT =	0.2839 V	OL/VOL	-0
EFFE	CTIVE SAL	IYD. COND.	= 0.1	190000000	000E-03 CM/S	EC
	GENERAL	DESIGN ANI	D EVAP	ORATIVE Z	ONE DATA	
NOTE.						
NOTE:	SOIL DATA	BASE USIN	G SOIL T	EXTURE #	9 WITH BARE	
	GROUND C	ONDITIONS	A SURI	ACE SLO	PE OF 5.% AI	ND
	A SLOPE LE	NGTH OF	225. ME	TERS.		
SCS RU	NOFF CURVE	NUMBER		= 92	1.53	
FRACTIO					0.0 PERC	ENT
EVAPOF	RATIVE ZONE	DEPTH		= 20.	0 CM	TARLS
INITIAL \	NATER IN EV	APORATIVE	ZONE	= 8.	079 CM	
	LIMIT OF EVA	APORATIVE	STORA	3E = GF =	10.135 CM 5.050 CM	
INITIAL	SNOW WATE	R	=	27.708	B CM	
	NATER IN LA	YER MATER	RIALS	= 633.	276 CM	
TOTAL	SUBSURFACE		=	= 0.	00 MM/YR	
	EVAPOTR	ANSPIRATIO	ON AND	WEATHER	R DATA	
NOTE:	EVAPOTRA Ottawa	NSPIRATION CA	N DATA NA	WAS OBTA	NINED FROM	
STA	TION LATITU	JDE		= 45	.32 DEGREES	;
MA	XIMUM LEAF	AREA INDE		= IAN DATE)	4.00 = 123	
ENI	OF GROWI	NG SEASON	I (JULIAI	N DATE)	= 282	
EVA	PORATIVE Z			=	20.0 CM	
AVE	ERAGE ANNU	UARTER RE	ELATIVE		= 17.70 KPH (= 71.00 %	
AVE	RAGE 2ND C	QUARTER R	ELATIVE	E HUMIDIT	Y = 66.00 %	
AVE AVE	ERAGE 3RD (ERAGE 4TH (UARTER R		E HUMIDIT'	Y = 73.00% / = 79.00%	
					- 73.00 /8	
NOTE:	PRECIPITAT		VAS SY	NTHETICA	LLY GENERAT	FED USING
	COEFFICIE	NTS FOR	Ottawa		ON	
	NORMAL			RECIPITATI		
JAN/JUL	FEB/AUG	MAR/SEF		/R/OCT	MAY/NOV	JUN/DEC
57.7	50.4	62.2	77.7	83.5	81.5	
76.8	95.0	82.4	87.3	83.7	84.3	
NOTE:	TEMPERATI COEFFICIEI	JRE DATA V NTS FOR	VAS SYI Ottawa	NTHETICAI	LLY GENERAT ON	ED USING
NC	ORMAL MEAN	MONTHLY	TEMPE	RATURE (D	EGREES CEL	SIUS)
JAN/JUL	FEB/AUG	MAR/SEF	P AF	PR/OCT	MAY/NOV	JUN/DEC

JAN/JUL	FEB/AU	JG MAR/S	SEP AF	PR/OCT	MAY/NOV	JUN/DE
-10.5 21.2	 -8.3 19.6	-2.4 14.3	6.4 7.7	 13.3 1.0	17.9 -7.2	

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON AND STATION LATITUDE = 45.37 DEGREES

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 20								
	MM	CU.	METERS	PERC	ENT			
PRECIPITATION	904.39 (104.063)	9044.0	100.00)			
RUNOFF	0.000 (0.0000)	0.00	0.000				
EVAPOTRANSPIRATION	572.045	(329.8968)	5720.	45	63.252			
LATERAL DRAINAGE COLLECT FROM LAYER 5	ED 140.6	6826 (62.404	74) 140	6.683	15.55385			
PERCOLATION/LEAKAGE THR LAYER 7	DUGH 0.0	00420 (0.00	179)	0.042	0.00046			
AVERAGE HEAD ON TOP OF LAYER 6	0.303	(0.134)						
LATERAL DRAINAGE COLLECT FROM LAYER 11	ED 0.00	284 (0.0006	61) ().028	0.00031			
PERCOLATION/LEAKAGE THR LAYER 13	DUGH 0.0	0.00 (0.00	013)	0.007	0.00008			
AVERAGE HEAD ON TOP OF LAYER 12	0.035	(0.008)						
PERCOLATION/LEAKAGE THR LAYER 14	DUGH 0.0	0.00 (0.00	000)	0.000	0.00000			
CHANGE IN WATER STORAGE	191.67	9 (14.5522	2) 1916	6.79	21.194			

PEAK DAILY VALUES FOR YE	ARS 1	THROUGH	20	and the	r dates (DDDYYYY)
	(MM)	(CU. ME	TERS)		
PRECIPITATION	54.00		0.00000	144001	2
RUNOFF	0.000	0	.00000	0	
DRAINAGE COLLECTED FROM LAYER	5	1.65396	16	6.53956	3120019
PERCOLATION/LEAKAGE THROUGH L	AYER 7	0.00004	46	0.00046	3120019
AVERAGE HEAD ON TOP OF LAYER	6	1.305			
MAXIMUM HEAD ON TOP OF LAYER	6	2.580			
LOCATION OF MAXIMUM HEAD IN LAY (DISTANCE FROM DRAIN)	'ER 5 2.6	METERS			
DRAINAGE COLLECTED FROM LAYER	11	0.00001	C	.00010	3490015
PERCOLATION/LEAKAGE THROUGH L	AYER 13	0.00000)2	0.00002	3490015
AVERAGE HEAD ON TOP OF LAYER 12	2	0.046			
MAXIMUM HEAD ON TOP OF LAYER 12	2	0.093			
LOCATION OF MAXIMUM HEAD IN LAY (DISTANCE FROM DRAIN)	'ER 11 0.2	METERS			
PERCOLATION/LEAKAGE THROUGH L	AYER 14	0.00000	00	0.00000	0
SNOW WATER	4261.4	0 42	613.9723	33700	19

MINIMUM VEG. SOIL WATER (VOL/VOL) 0.2525

0.4389

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

F	FINAL WATER STORAGE AT END OF YEAR							
	LAYER	(CM)	(VOL/VOL)					
	1	6.5817	0.4388					
	2 5	525.6372	0.2920					
	3	0.0227	0.0454					
	4	1.5266	0.0509					
	5	0.0119	0.0198					
	6	0.0000	0.0000					
	7	33.9000	0.4520					
	8	0.0050	0.0100					
	9	0.9600	0.0320					
	10	0.0050	0.0100					
	11	2.2956	0.0620					
	12	0.0000	0.0000					
	13	33.9000	0.4520					
	14	28.3934	0.2839					
SI	NOW WATER	411.104						
*****	*****	*****	*****	*				

***********	***************************************		
**********	***************************************		
**	**		
**	**		
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE		**
**	HELP MODEL VERSION 3.07 (1 November 1997)	**	
**	DEVELOPED BY ENVIRONMENTAL LABORATORY		**
**	USAE WATERWAYS EXPERIMENT STATION		**
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY		**
**	**		
**	**		
**********	***************************************		
**********	***************************************		

 PRECIPITATION DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather1.dat

 TEMPERATURE DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather2.dat

 SOLAR RADIATION DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather3.dat

 EVAPOTRANSPIRATION DATA
 C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat

 SOIL AND DESIGN DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat

 OUTPUT DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_gappas55.inp

 OUTPUT DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_392355.inp

TIME: 16:31 DATE: 7/15/2011

TITLE: Interim Cover - Sand, no Runoff

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 9 THICKNESS 30.00 CM = 0.4370 VOL/VOL POROSITY = FIELD CAPACITY 0.0620 VOL/VOL = WILTING POINT 0.0240 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.2868 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.5800000000E-02 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 18 THICKNESS = 1800.00 CM 0.6710 VOL/VOL POROSITY = FIELD CAPACITY 0.2920 VOL/VOL = WILTING POINT 0.0770 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.2996 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.100000224000E-02 CM/SEC

LAYER 3

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20 THICKNESS = 0.50 CM

POROSITY	=		0.8500 VOL/VOL	
FIELD CAPACITY	=		0.0100 VOL/VOL	
WILTING POINT	=		0.0050 VOL/VOL	
INITIAL SOIL WATER CONTE	NT	=	0.1582 VOL/VO	L
EFFECTIVE SAT. HYD. COND).	=	10.0000000000	CM/SEC

TYPE 2 - LATERAL DRAINAGE LAYER							
	υĸ	EI	NOMBER	K 21			
THICKNESS	=		30.00	СМ			
POROSITY	=		0.3970	VOL/\	/OL		
FIELD CAPACITY	=		0.0320	VOL/	VOL		
WILTING POINT	=		0.0130	VOL/V	VOL		
INITIAL SOIL WATER CONTEN	IT	=	0.0	841 V	OL/VO	L	
EFFECTIVE SAT. HYD. COND.		=	0.30000	00000	000	CM/S	EC

LAYER 5

TYPE 2 - LATERAL D	DRAINAGE LAYER
MATERIAL TEXTU	RE NUMBER 34
THICKNESS =	0.60 CM
POROSITY =	0.8500 VOL/VOL
FIELD CAPACITY =	= 0.0100 VOL/VOL
WILTING POINT =	0.0050 VOL/VOL
INITIAL SOIL WATER CONTENT	Γ = 0.3388 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 33.000000000 CM/SEC
SLOPE =	0.50 PERCENT
DRAINAGE LENGTH	= 225.0 METERS

LAYER 6

TYPE 4 - FLEXIBLE I	MEMBRANE LINER
MATERIAL TEXTU	JRE NUMBER 35
THICKNESS =	= 0.10 CM
POROSITY =	= 0.0000 VOL/VOL
FIELD CAPACITY =	= 0.0000 VOL/VOL
WILTING POINT =	= 0.0000 VOL/VOL
INITIAL SOIL WATER CONTENT	T = 0.0000 VOL/VOL
EFFECTIVE SAT. HYD. COND.	= 0.20000000000E-12 CM/SEC
FML PINHOLE DENSITY	= 2.00 HOLES/HECTARE
FML INSTALLATION DEFECTS	= 2.00 HOLES/HECTARE
FML PLACEMENT QUALITY	= 4 - POOR

LAYER 7

TYPE 3 - BARRI MATERIAL TEXT	ER S TURE		L LINEF	र २ 28	l		
THICKNESS	=		75.00	СМ			
POROSITY	=		0.4520	VOL	/VOL		
FIELD CAPACITY	=		0.4110	VOL	/VOL		
WILTING POINT	=		0.3110	VOL	/VOL		
INITIAL SOIL WATER CONTE	NT	=	0.4	520 \	/OL/V	DL	
EFFECTIVE SAT. HYD. COND). =	=	0.12000	0000	000E-	05 CM	/SEC

LAYER 8

TYPE 2 - LATERAL DRAINAGE LAYER
MATERIAL TEXTURE NUMBER 20THICKNESS=0.50CMPOROSITY=0.8500VOL/VOLFIELD CAPACITY=0.0100VOL/VOL

WILTING POINT =		0.0050 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.0100 VOL/VO	L
EFFECTIVE SAT. HYD. COND.	=	10.000000000	CM/SEC

LAYER 9 -----

TYPE 2 - LATERAL DRAINAGE LAYER								
MATERIAL TEXTURE NUMBER 21								
THICKNESS =		30.00	CM					
POROSITY =		0.3970	VOL/VOL					
FIELD CAPACITY :	=	0.0320	O VOL/VOL	-				
WILTING POINT =		0.0130	VOL/VOL					
INITIAL SOIL WATER CONTEN	Г =	0.0)320 VOL/\	/OL				
EFFECTIVE SAT. HYD. COND.	=	0.30000	0000000	CM	/SEC			

LAYER 10

TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTURE NUMBER 20								
THICKNESS	=		0.50	CM				
POROSITY	=		0.8500	VOL/VO	L			
FIELD CAPACITY	=		0.0100	VOL/VC)L			
WILTING POINT	=		0.0050	VOL/VO	L			
INITIAL SOIL WATER CONTE	INT	=	0.0	100 VOL	/VOL			
EFFECTIVE SAT. HYD. CONI	D.	=	10.000	0000000		CM/SEC		

LAYER 11 -----

TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTU	RE	NUMBER	R 2		
THICKNESS =		37.00	CM		
POROSITY =		0.4370	VOL/	VOL	
FIELD CAPACITY =	•	0.0620	VOL	/VOL	
WILTING POINT =		0.0240	VOL/	VOL	
INITIAL SOIL WATER CONTENT	Γ =	= 0.0	620 V	OL/VO	L
EFFECTIVE SAT. HYD. COND.	=	0.58000	00000	000E-02	2 CM/SEC
SLOPE =		0.50 F	PERCI	ENT	
DRAINAGE LENGTH	=	225.0	M	ETERS	

LAYER 12

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

				```	50			
THICKNESS	=		0.10	CN	1			
POROSITY	=		0.0000	VO	L/VOI			
FIELD CAPACITY	=		0.0000	) V (	DL/VO	L		
WILTING POINT	=		0.0000	VC	)L/VO	L		
INITIAL SOIL WATER CONTEN	ΙT	=	0.0	000	VOL	/VOL		
EFFECTIVE SAT. HYD. COND.		= (	0.20000	)00(	00000	E-12	CM/S	EC
FML PINHOLE DENSITY	=	=	2.00		HOLE	S/HE	CTAR	E
FML INSTALLATION DEFECTS	3	=	2.0	00	HOL	ES/F	<b>IECT</b>	٨RE
FML PLACEMENT QUALITY		=	4 - PO	OR				

#### LAYER 13 -----

## TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 28 MATERIAL TEXTORE NOMBER28THICKNESS=75.00CMPOROSITY=0.4520VOL/VOLFIELD CAPACITY=0.4110VOL/VOLWILTING POINT=0.3110VOL/VOLINITIAL SOIL WATER CONTENT=0.4520VOL/VOL

LAYER 14 -----

	TYPE 1 - MATE					YER	
THIC	KNESS		=	100.0	0 CM		
FIELD	DSITY CAPACITY		=	0.50	10 VOL/ 840 VOL	/VOL /VOL	
WILTI			=	0.13	350 VOL	/VOL	
EFFE	CTIVE SAT. F	IYD. CONTE	D. =	0.19	0.2839 \ 0000000	000E-03 CM/	SEC
	GENERAL	DESIGN AI	ND EV	APOF	RATIVE 2	ZONE DATA	
NOTE:	SCS RUNOF SOIL DATA FAIR STANI AND A SLOI	FF CURVE BASE USIN O OF GRAS PE LENGTI	NUME NG SO SS, A S H OF	BER W IL TE SURF/ 225.	/AS CON XTURE # ACE SLO METERS	MPUTED FRO # 9 WITH A DPE OF 5.% S.	M DEFAULT
SCS RUI FRACTIO AREA PI EVAPOF INITIAL V UPPER I LOWER INITIAL S INITIAL S TOTAL S	NOFF CURVE ON OF AREA ROJECTED C RATIVE ZONE WATER IN EV LIMIT OF EV LIMIT OF EV SNOW WATE WATER IN LA NITIAL WATE SUBSURFACE	E NUMBER ALLOWING DEPTH APORATIV APORATIV APORATIV R YER MATE R E INFLOW	G RUN NTAL /E ZOI E STO E STO ERIALS	IOFF PLAN NE RAGE PRAGI = = =	= 8 = 20. = 20. = 7 = 3.716 = 650. 653.944 = 0	1.18 0.0 PER( 1.0000 HE( 0 CM 562 CM 8.740 CM 0.480 CM 5 CM 227 CM 4 CM .00 MM/YR	CENT CTARES
	EVAPOTR	ANSPIRAT	TON A	ND W	EATHEI	R DATA	
NOTE:	EVAPOTRA Ottawa	NSPIRATIC C	ON DA ANA	TA W.	AS OBT/	AINED FROM	
STA MAX STA ENI EVA AVE AVE AVE AVE	ATION LATITL XIMUM LEAF ART OF GROVID O OF GROVID PORATIVE Z ERAGE ANNU ERAGE 1ST C ERAGE 2ND C ERAGE 3RD C ERAGE 4TH C	JDE AREA IND WING SEAS NG SEASC ONE DEP OLAL WIND S QUARTER QUARTER QUARTER QUARTER I	EX SON (JUI TH RELAT RELAT RELAT RELAT	JULIA LIAN I TIVE F TIVE F TIVE F	= 4 = N DATE; DATE) = !UMIDIT !UMIDIT !UMIDIT	5.32 DEGREE 4.00 = 123 = 282 20.0 CM = 17.70 KPH Y = 71.00 % Y = 66.00 % Y = 73.00 % Y = 79.00 %	1 6 % 6
NOTE:	PRECIPITAT COEFFICIEI	FION DATA	WAS Otta	SYN1 wa	HETICA	LLY GENERA ON	ATED USING
	NORMAL	MEAN MOI	NTHLY	′ PRE	CIPITAT	ION (MM)	
JAN/JUL	FEB/AUG	MAR/SE	EP	APR	/ОСТ	MAY/NOV	JUN/DEC
57.7 76.8	50.4 95.0	62.2 82.4	77.7 87.3	7 3	83.5 83.7	81.5 84.3	
NOTE:	TEMPERAT COEFFICIEI	URE DATA NTS FOR	WAS Otta	SYNT iwa	HETICA	LLY GENERA ON	TED USING
NC	ORMAL MEAN	I MONTHL'	Y TEM	PERA	TURE ([	DEGREES CE	LSIUS)
JAN/JUL	FEB/AUG	MAR/SE	EP	APR	/OCT	MAY/NOV	JUN/DEC
-10.5	-8.3	-2.4	6.4		13.3	17.9	

21.2

19.6

14.2

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON AND STATION LATITUDE = 45.37 DEGREES

1.0

-7.2

7.7

******

#### 

MM       CU. METERS       PERCENT         PRECIPITATION       904.39       (104.063)       9044.0       100.00         RUNOFF       0.000       0.000       0.000       0.000         EVAPOTRANSPIRATION       430.368       (48.9930)       4303.68       47.586         LATERAL DRAINAGE COLLECTED       482.40860       (99.00222)       4824.086       53.34048         FROM LAYER 5       PERCOLATION/LEAKAGE THROUGH       0.01301       0.00251)       0.130       0.00144         AVERAGE HEAD ON TOP       1.038       0.214)       0F LAYER 6       0.00881       0.00213)       0.088       0.00097	AVERAGE ANNUAL TOTALS	6 & (STD. DEV	IATIONS) FC	R YEARS	1 THROUGH	20
PRECIPITATION       904.39       (104.063)       9044.0       100.00         RUNOFF       0.000       0.000       0.000       0.000         EVAPOTRANSPIRATION       430.368       (48.9930)       4303.68       47.586         LATERAL DRAINAGE COLLECTED       482.40860 (99.00222)       4824.086       53.34048         FROM LAYER 5       PERCOLATION/LEAKAGE THROUGH       0.01301 (0.00251)       0.130       0.00144         AVERAGE HEAD ON TOP       1.038 (0.214)       0F LAYER 6       0.00881 (0.00213)       0.088       0.00097		MM	CU. N	IETERS P	ERCENT	
RUNOFF       0.000 ( 0.000)       0.00       0.00         EVAPOTRANSPIRATION       430.368 ( 48.9930)       4303.68 47.586         LATERAL DRAINAGE COLLECTED       482.40860 ( 99.00222)       4824.086 53.34048         PERCOLATION/LEAKAGE THROUGH       0.01301 ( 0.00251)       0.130 0.00144         AVERAGE HEAD ON TOP       1.038 ( 0.214)       0.00881 ( 0.00213)       0.088 0.00097	PRECIPITATION	904.39 (1	04.063)	9044.0 10	00.00	
EVAPOTRANSPIRATION       430.368 (48.9930)       4303.68 47.586         LATERAL DRAINAGE COLLECTED       482.40860 (99.00222)       4824.086 53.34048         PERCOLATION/LEAKAGE THROUGH       0.01301 (0.00251)       0.130 0.00144         AVERAGE HEAD ON TOP       1.038 (0.214)       0.01801 (0.00213)         OF LAYER 6       0.00881 (0.00213)       0.088 0.00097	RUNOFF	0.000 ( 0	.0000)	0.00 0	.000	
LATERAL DRAINAGE COLLECTED 482.40860 ( 99.00222) 4824.086 53.34048 FROM LAYER 5 PERCOLATION/LEAKAGE THROUGH 0.01301 ( 0.00251) 0.130 0.00144 LAYER 7 AVERAGE HEAD ON TOP 1.038 ( 0.214) OF LAYER 6 LATERAL DRAINAGE COLLECTED 0.00881 ( 0.00213) 0.088 0.00097 FROM LAYER 11	EVAPOTRANSPIRATION	430.368	( 48.9930)	4303.68	47.586	
PERCOLATION/LEAKAGE THROUGH       0.01301 (0.00251)       0.130       0.00144         LAYER 7       1.038 (0.214)       0.00213)       0.088       0.00097         AVERAGE HEAD ON TOP       1.038 (0.00213)       0.088       0.00097         FROM LAYER 11       0.00881 (0.00213)       0.088       0.00097	LATERAL DRAINAGE COLLECT FROM LAYER 5	ED 482.408	360 ( 99.0022	4824.0	)86 53.34048	
AVERAGE HEAD ON TOP 1.038 ( 0.214) OF LAYER 6 LATERAL DRAINAGE COLLECTED 0.00881 ( 0.00213) 0.088 0.00097 FROM LAYER 11	PERCOLATION/LEAKAGE THRO LAYER 7	DUGH 0.0 ⁻	1301(0.002	251) 0.	130 0.00144	4
LATERAL DRAINAGE COLLECTED 0.00881 ( 0.00213) 0.088 0.00097 FROM LAYER 11	AVERAGE HEAD ON TOP OF LAYER 6	1.038 (	0.214)			
	LATERAL DRAINAGE COLLECT FROM LAYER 11	ED 0.008	81 ( 0.0021	3) 0.08	38 0.00097	
PERCOLATION/LEAKAGE THROUGH 0.00182 ( 0.00039) 0.018 0.00020 LAYER 13	PERCOLATION/LEAKAGE THRO LAYER 13	OUGH 0.00	0182 ( 0.000	039) 0.0	018 0.00020	0
AVERAGE HEAD ON TOP 0.108 ( 0.026) OF LAYER 12	AVERAGE HEAD ON TOP OF LAYER 12	0.108 (	0.026)			
PERCOLATION/LEAKAGE THROUGH 0.00000 ( 0.00000) 0.000 0.00000 LAYER 14	PERCOLATION/LEAKAGE THRO LAYER 14	OUGH 0.00	0000 ( 0.000	000) 0.0	000 0.0000	0
CHANGE IN WATER STORAGE -8.390 ( 2.9943) -83.90 -0.928	CHANGE IN WATER STORAGE	-8.390	( 2.9943)	-83.90	-0.928	

PEAK DAILY VALUES FOR YE	ARS 1	THROUGH	20	and thei	r dates (DDDYYY)	()
	(MM)	(CU. ME	TERS)			
PRECIPITATION	54.00	54	0.00000	144001	2	
RUNOFF	0.000	0	.00000	0		
DRAINAGE COLLECTED FROM LAYER	5	5.00681	50	0.06815	1540016	
PERCOLATION/LEAKAGE THROUGH L	AYER 7	0.00012	23	0.00123	1540016	
AVERAGE HEAD ON TOP OF LAYER	3	3.951				
MAXIMUM HEAD ON TOP OF LAYER	3	7.682				
LOCATION OF MAXIMUM HEAD IN LAY (DISTANCE FROM DRAIN)	ER 5 6.3	METERS				
DRAINAGE COLLECTED FROM LAYER	11	0.00003	0	.00032	2690020	
PERCOLATION/LEAKAGE THROUGH LA	AYER 13	0.00000	06	0.00006	2690020	
AVERAGE HEAD ON TOP OF LAYER 12	2	0.144				
MAXIMUM HEAD ON TOP OF LAYER 12	2	0.288				
LOCATION OF MAXIMUM HEAD IN LAY (DISTANCE FROM DRAIN)	ER 11 0.4	METERS				
PERCOLATION/LEAKAGE THROUGH LA	AYER 14	0.00000	00	0.00000	0	
SNOW WATER	236.91	1 2:	369.1375	73001	2	

## MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0240

0.4370

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

******

FINAL	FINAL WATER STORAGE AT END OF YEAR							
LAYE	ER (CM)	(VOL/VO	DL)					
1	7.9269	0.2642						
2	526.0202	0.2922						
3	0.0980	0.1960						
4	2.5817	0.0861						
5	0.1577	0.2628						
6	0.0000	0.0000						
7	33.9000	0.4520						
8	0.0050	0.0100						
9	0.9600	0.0320						
10	0.0050	0.0100						
11	2.2993	0.0621						
12	0.0000	0.0000						
13	33.9000	0.4520						
14	28.3956	0.2840						
SNOW	WATER 0.	913						

***********	***************************************		
**********	***************************************		
**	**		
**	**		
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE		**
**	HELP MODEL VERSION 3.07 (1 November 1997)	**	
**	DEVELOPED BY ENVIRONMENTAL LABORATORY		**
**	USAE WATERWAYS EXPERIMENT STATION		**
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY		**
**	**		
**	**		
**********	***************************************		
**********	***************************************		

 PRECIPITATION DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather1.dat

 TEMPERATURE DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather2.dat

 SOLAR RADIATION DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather3.dat

 EVAPOTRANSPIRATION DATA
 C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat

 SOIL AND DESIGN DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat

 OUTPUT DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_gappas55.inp

 OUTPUT DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_392355.inp

TIME: 16:42 DATE: 7/15/2011

TITLE: Interim Cover - Silty Clay, no Runoff

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

#### LAYER 1

**TYPE 1 - VERTICAL PERCOLATION LAYER** MATERIAL TEXTURE NUMBER 9 THICKNESS 30.00 CM = 0.4520 VOL/VOL POROSITY = FIELD CAPACITY 0.4110 VOL/VOL = WILTING POINT 0.3110 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.4373 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.1200000000E-05 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

## LAYER 2

**TYPE 1 - VERTICAL PERCOLATION LAYER** MATERIAL TEXTURE NUMBER 18 THICKNESS = 1800.00 CM 0.6710 VOL/VOL POROSITY = FIELD CAPACITY 0.2920 VOL/VOL = WILTING POINT 0.0770 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.100000224000E-02 CM/SEC

## LAYER 3

#### TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20 THICKNESS = 0.50 CM

POROSITY	=	0.8500 VOL/VOL	
FIELD CAPACITY	=	0.0100 VOL/VOL	
WILTING POINT	=	0.0050 VOL/VOL	
INITIAL SOIL WATER CONTEN	νT =	0.0518 VOL/VO	)L
EFFECTIVE SAT. HYD. COND.	. =	10.0000000000	CM/SEC

TYPE 2 - LATERAL DRAINAGE LAYER										
MATERIAL TEXTURE NUMBER 21										
THICKNESS	=		30.00	CM						
POROSITY :	=		0.3970	VOL/VC	)L					
FIELD CAPACITY	=		0.0320	VOL/VO	ЭL					
WILTING POINT	=		0.0130	VOL/VC	)L					
INITIAL SOIL WATER CONTEN	IT	=	0.0	552 VOL	_/VOL	-				
EFFECTIVE SAT. HYD. COND.		=	0.30000	000000	C	CM/SEC				

LAYER 5

TYPE 2 - LATERAL DRAINAGE LAYER									
MATERIAL TEXTURE NUMBER 34									
THICKNESS =	(	0.60	CM						
POROSITY =	C	.8500	VOL/VOL						
FIELD CAPACITY =		0.0100	VOL/VOL						
WILTING POINT =	(	0.0050	VOL/VOL						
INITIAL SOIL WATER CONTENT	. =	0.0	298 VOL/VO	L					
EFFECTIVE SAT. HYD. COND.	= :	33.000	0000000	CM/SEC					
SLOPE =	0.	50 P	PERCENT						
DRAINAGE LENGTH	=	225.0	METERS						

## LAYER 6

TYPE 4 - FLEXIBLE MEMBRANE LINER										
MATERIAL TEXTU	IRE N	UMBER	35							
THICKNESS =		0.10	CM							
POROSITY =		0.0000	VOL/V	OL						
FIELD CAPACITY =	=	0.0000	VOL/\	/OL						
WILTING POINT =		0.0000	VOL/V	'OL						
INITIAL SOIL WATER CONTENT	Г =	0.0	000 VC	DL/VOL						
EFFECTIVE SAT. HYD. COND.	= (	0.20000	00000	00E-12	CM/SEC					
FML PINHOLE DENSITY	=	2.00	HOL	ES/HE	CTARE					
FML INSTALLATION DEFECTS	=	2.0	00 H	OLES/H	ECTARE					
FML PLACEMENT QUALITY	=	4 - PO	OR							

## LAYER 7

TYPE 3 - BARRI MATERIAL TEXT	ER S TURE		L LINEF	र २ 28	l		
THICKNESS	=		75.00	СМ			
POROSITY	=		0.4520	VOL	/VOL		
FIELD CAPACITY	=		0.4110	VOL	/VOL		
WILTING POINT	=		0.3110	VOL	/VOL		
INITIAL SOIL WATER CONTE	NT	=	0.4	520 \	/OL/V	DL	
EFFECTIVE SAT. HYD. COND	). =	=	0.12000	0000	000E-	05 CM	/SEC

## LAYER 8

# TYPE 2 - LATERAL DRAINAGE LAYER<br/>MATERIAL TEXTURE NUMBER 20THICKNESS=0.50CMPOROSITY=0.8500VOL/VOLFIELD CAPACITY=0.0100VOL/VOL

WILTING POINT =		0.0050 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.0100 VOL/VO	L
EFFECTIVE SAT. HYD. COND.	=	10.000000000	CM/SEC

#### LAYER 9 -----

TYPE 2 - LATERAL DRAINAGE LAYER											
MATERIAL TEXTURE NUMBER 21											
THICKNESS =		30.00	CM								
POROSITY =		0.3970	VOL/VOL								
FIELD CAPACITY :	=	0.0320	O VOL/VOL	-							
WILTING POINT =		0.0130	VOL/VOL								
INITIAL SOIL WATER CONTEN	Г =	0.0	)320 VOL/\	/OL							
EFFECTIVE SAT. HYD. COND.	=	0.30000	0000000	CM	/SEC						

## LAYER 10

-----

## TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTURE NUMBER 20										
THICKNESS	=		0.50	CM						
POROSITY	=		0.8500	VOL/VO	L					
FIELD CAPACITY	=		0.0100	VOL/VC	)L					
WILTING POINT	=		0.0050	VOL/VO	L					
INITIAL SOIL WATER CONTE	INT	=	0.0	100 VOL	/VOL					
EFFECTIVE SAT. HYD. CONI	D.	=	10.000	0000000		CM/SEC				

#### LAYER 11 -----

## TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTU	RE	NUMBER	R 2		
THICKNESS =		37.00	CM		
POROSITY =		0.4370	VOL/	VOL	
FIELD CAPACITY =		0.0620	VOL	/VOL	
WILTING POINT =		0.0240	VOL/	VOL	
INITIAL SOIL WATER CONTENT	Γ =	= 0.0	620 V	OL/VO	L
EFFECTIVE SAT. HYD. COND.	=	0.58000	00000	000E-02	2 CM/SEC
SLOPE =		0.50 F	PERCI	ENT	
DRAINAGE LENGTH	=	225.0	M	ETERS	

## LAYER 12

-----

## TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

MATERIAL TEXTORE NOWDER 35								
THICKNESS	=		0.10	CN	1			
POROSITY	=		0.0000	VO	L/VOI			
FIELD CAPACITY	=		0.0000	) V (	DL/VO	L		
WILTING POINT	=		0.0000	VC	)L/VO	L		
INITIAL SOIL WATER CONTEN	ΙT	=	0.0	000	VOL	/VOL		
EFFECTIVE SAT. HYD. COND.		= (	0.20000	)00(	00000	E-12	CM/S	EC
FML PINHOLE DENSITY	=	=	2.00		HOLE	S/HE	CTAR	E
FML INSTALLATION DEFECTS	3	=	2.0	00	HOL	ES/F	<b>IECT</b>	٨RE
FML PLACEMENT QUALITY		=	4 - PO	OR				

#### LAYER 13 -----

## TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 28 MATERIAL TEXTORE NOMBER28THICKNESS=75.00CMPOROSITY=0.4520VOL/VOLFIELD CAPACITY=0.4110VOL/VOLWILTING POINT=0.3110VOL/VOLINITIAL SOIL WATER CONTENT=0.4520VOL/VOL

LAYER 14 -----

	TYPE 1 - MATE					YER	
THIC	(NESS		=	100.0	0 CM		
FIELD	OSITY CAPACITY		=	0.50	)10 VOL/ 840 VOL	/VOL /VOL	
WILTI			=	0.13	350 VOL	/VOL	
EFFE	CTIVE SAT. F	IYD. CONTE	D. =	0.19	0.2839 \	000E-03 CM/	SEC
	GENERAL	DESIGN AI	ND EV	APOF	RATIVE 2	ZONE DATA	
NOTE:	SCS RUNOF SOIL DATA FAIR STANI AND A SLOI	FF CURVE BASE USIN O OF GRAS PE LENGTI	NUME NG SO SS, A S H OF	BER W IL TE SURF/ 225.	/AS CON XTURE # ACE SLC METERS	MPUTED FRO # 9 WITH A DPE OF 5.% S.	M DEFAULT
SCS RUI FRACTIO AREA PI EVAPOF INITIAL V UPPER I LOWER INITIAL S INITIAL S TOTAL S	NOFF CURVE ON OF AREA ROJECTED C ATIVE ZONE WATER IN EV LIMIT OF EV LIMIT OF EV SNOW WATE WATER IN LA NITIAL WATE SUBSURFACE	E NUMBER ALLOWING IN HORIZC EPPTH APORATIVI APORATIVI R YER MATE R E INFLOW	G RUN NTAL /E ZOI E STO E STO ERIALS	IOFF PLAN RAGE RAGE RAGI = = =	= 8 = 20. = 20. = 9 = = 27.710 = 639. 667.584 = 0	1.18 0.0 PER( 1.0000 HE( 0 CM 0.009 CM 9.040 CM 6.220 CM 0 CM 874 CM 4 CM .00 MM/YR	CENT CTARES
	EVAPOTR	ANSPIRAT	TON A	ND W	EATHE	R DATA	
NOTE:	EVAPOTRA Ottawa	NSPIRATIC C	ON DA ANA	TA W.	AS OBT/	AINED FROM	
STA MAX STA ENI EVA AVE AVE AVE AVE	TION LATITL XIMUM LEAF ART OF GROVID OF GROVID PORATIVE Z RAGE ANNL RAGE 1ST C RAGE 2ND C RAGE 3RD C RAGE 4TH C	JDE AREA IND WING SEAS NG SEASC ONE DEP OLAL WIND S QUARTER QUARTER QUARTER QUARTER I	EX SON (JUI TH RELAT RELAT RELAT RELAT	JULIA LIAN I TIVE F TIVE F TIVE F	= 4 = N DATE; DATE) = iUMIDIT iUMIDIT iUMIDIT	5.32 DEGREE 4.00 = 123 = 282 20.0 CM = 17.70 KPH Y = 71.00 % Y = 66.00 % Y = 73.00 % Y = 79.00 %	1 6 % 6
NOTE:	PRECIPITAT	FION DATA	WAS Otta	SYN1 wa	HETICA	LLY GENERA ON	ATED USING
	NORMAL	MEAN MOI	NTHLY	′ PRE	CIPITAT	ION (MM)	
JAN/JUL	FEB/AUG	MAR/SE	EP	APR	/OCT	MAY/NOV	JUN/DEC
57.7 76.8	50.4 95.0	62.2 82.4	77.7 87.3	7 3	83.5 83.7	81.5 84.3	
NOTE:	TEMPERAT COEFFICIEI	URE DATA NTS FOR	WAS Otta	SYNT iwa	HETICA	LLY GENERA ON	TED USING
NC	RMAL MEAN	I MONTHL'	Y TEM	PERA	TURE (E	DEGREES CE	LSIUS)
JAN/JUL	FEB/AUG	MAR/SE	EP	APR	/OCT	MAY/NOV	JUN/DEC
-10.5	-8.3	-2.4	6.4		13.3	17.9	

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON AND STATION LATITUDE = 45.37 DEGREES

1.0

-7.2

7.7

21.2

19.6

14.2

******

#### 

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 20						
	MM		CU. METE	RS PERC	CENT	
PRECIPITATION	904.39	( 104.063	) 904	4.0 100.0	0	
RUNOFF	0.000	( 0.0000)	0.	00 0.000	)	
EVAPOTRANSPIRATION	570.	558 (329.	1116)	5705.58	63.087	
LATERAL DRAINAGE COLLECT FROM LAYER 5	ED 14	1.97449 ( 6	1.89933)	1419.745	15.69828	
PERCOLATION/LEAKAGE THR LAYER 7	OUGH	0.00426 (	0.00176)	0.043	0.00047	
AVERAGE HEAD ON TOP OF LAYER 6	0.3	306(0.13	33)			
LATERAL DRAINAGE COLLECT FROM LAYER 11	ED	0.00288((	0.00063)	0.029	0.00032	
PERCOLATION/LEAKAGE THR LAYER 13	OUGH	0.00070 (	0.00013)	0.007	0.00008	
AVERAGE HEAD ON TOP OF LAYER 12	0.0	)35 ( 0.00	08)			
PERCOLATION/LEAKAGE THR LAYER 14	OUGH	0.00000 (	0.00000)	0.000	0.00000	
CHANGE IN WATER STORAGE	19	1.860 (14	.5530)	1918.60	21.214	

PEAK DAILY VALUES FOR YE	ARS 1	THROUGH	20	and thei	r dates (DDD)	YYYY)
	(MM)	(CU. MET	ERS)			
PRECIPITATION	54.00	540	0.00000	1440012	2	
RUNOFF	0.000	0.	00000	0		
DRAINAGE COLLECTED FROM LAYER	5	1.19788	11	.97881	1820015	
PERCOLATION/LEAKAGE THROUGH L	AYER 7	0.00003	4	0.00034	1820015	
AVERAGE HEAD ON TOP OF LAYER	6	0.945				
MAXIMUM HEAD ON TOP OF LAYER	6	1.874				
LOCATION OF MAXIMUM HEAD IN LAY (DISTANCE FROM DRAIN)	ER 5 2.0	METERS				
DRAINAGE COLLECTED FROM LAYER	11	0.00001	0	.00010	3530015	
PERCOLATION/LEAKAGE THROUGH LA	AYER 13	0.00000	2	0.00002	3530015	
AVERAGE HEAD ON TOP OF LAYER 12	2	0.047				
MAXIMUM HEAD ON TOP OF LAYER 12	2	0.094				
LOCATION OF MAXIMUM HEAD IN LAY (DISTANCE FROM DRAIN)	ER 11 0.2	METERS				
PERCOLATION/LEAKAGE THROUGH LA	AYER 14	0.00000	0	0.00000	0	
SNOW WATER	4264.6	0 420	646.0377	33700	19	

## MINIMUM VEG. SOIL WATER (VOL/VOL) 0.3110

0.4520

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

******

FINAL WATER STORAGE AT END OF YEAR							
	LAYER	(CM)	(VOL/VOL)				
	1	13.1498	0.4383				
	2	525.6000	0.2920				
	3	0.0246	0.0492				
	4	1.5983	0.0533				
	5	0.0147	0.0245				
	6	0.0000	0.0000				
	7	33.9000	0.4520				
	8	0.0050	0.0100				
	9	0.9600	0.0320				
	10	0.0050	0.0100				
	11	2.2956	0.0620				
	12	0.0000	0.0000				
	13	33.9000	0.4520				
	14	28.3934	0.2839				
	SNOW WAT	ER 411.457					
*****	*****	*****	****	**			

***********	***************************************					
**********	***************************************					
**	**					
**	**					
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE		**			
**	HELP MODEL VERSION 3.07 (1 November 1997)	**				
**	DEVELOPED BY ENVIRONMENTAL LABORATORY		**			
**	USAE WATERWAYS EXPERIMENT STATION		**			
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY		**			
**	**					
**	**					
***************************************						
**********	***************************************					

 PRECIPITATION DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather1.dat

 TEMPERATURE DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather2.dat

 SOLAR RADIATION DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather3.dat

 EVAPOTRANSPIRATION DATA
 C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat

 SOIL AND DESIGN DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat

 OUTPUT DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_gappas55.inp

 OUTPUT DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_392355.inp

TIME: 10:12 DATE: 7/22/2011

TITLE: Interim Cover - Sand, with Runoff

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

#### LAYER 1

**TYPE 1 - VERTICAL PERCOLATION LAYER** MATERIAL TEXTURE NUMBER 9 THICKNESS 30.00 CM = 0.4370 VOL/VOL POROSITY = FIELD CAPACITY 0.0620 VOL/VOL = WILTING POINT 0.0240 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.2022 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.5800000000E-02 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

## LAYER 2

**TYPE 1 - VERTICAL PERCOLATION LAYER** MATERIAL TEXTURE NUMBER 18 THICKNESS = 1800.00 CM 0.6710 VOL/VOL POROSITY = FIELD CAPACITY 0.2920 VOL/VOL = WILTING POINT 0.0770 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.2996 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.100000224000E-02 CM/SEC

## LAYER 3

#### TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20 THICKNESS = 0.50 CM

POROSITY	=		0.8500 VOL/VOL	
FIELD CAPACITY	=		0.0100 VOL/VOL	
WILTING POINT	=		0.0050 VOL/VOL	
INITIAL SOIL WATER CONTE	NT	=	0.1582 VOL/VO	L
EFFECTIVE SAT. HYD. COND	).	=	10.0000000000	CM/SEC

TYPE 2 - LATERAL DRAINAGE LAYER							
MATERIAL TEXTU	IRE	NUMBEF	R 21				
THICKNESS =		30.00	СМ				
POROSITY =		0.3970	VOL/VOL				
FIELD CAPACITY :	=	0.0320	VOL/VOL				
WILTING POINT =		0.0130	VOL/VOL				
INITIAL SOIL WATER CONTEN	Г =	: 0.3	584 VOL/V0	CL			
EFFECTIVE SAT. HYD. COND.	=	0.30000	0000000	CM/SEC			

LAYER 5

TYPE 2 - LATERAL DRAINAGE LAYER								
MATERIAL TEXTU	MATERIAL TEXTURE NUMBER 34							
THICKNESS =		0.60	CM					
POROSITY =	(	0.8500	VOL/VOL					
FIELD CAPACITY =		0.0100	VOL/VOL					
WILTING POINT =		0.0050	VOL/VOL					
INITIAL SOIL WATER CONTENT		0.8	500 VOL/VO	L				
EFFECTIVE SAT. HYD. COND.	=	33.000	0000000	CM/SEC				
SLOPE =	0	.50 P	PERCENT					
DRAINAGE LENGTH	= 1	0000.0	METERS	;				

## LAYER 6

TYPE 4 - FLEXIBLE MEMBRANE LINER						
MATERIAL TEXTU	IRE N	UMBER	35			
THICKNESS =		0.10	CM			
POROSITY =		0.0000	VOL/V	OL		
FIELD CAPACITY =	=	0.0000	VOL/\	/OL		
WILTING POINT =		0.0000	VOL/V	'OL		
INITIAL SOIL WATER CONTENT	Г =	0.0	000 VC	DL/VOL		
EFFECTIVE SAT. HYD. COND.	= (	0.20000	00000	00E-12	CM/SEC	
FML PINHOLE DENSITY	=	2.00	HOL	ES/HE	CTARE	
FML INSTALLATION DEFECTS	=	2.0	00 H	OLES/H	ECTARE	
FML PLACEMENT QUALITY	=	4 - PO	OR			

## LAYER 7

TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 28							
THICKNESS	=		75.00	СМ			
POROSITY	=		0.4520	VOL	/VOL		
FIELD CAPACITY	=		0.4110	VOL	/VOL		
WILTING POINT	=		0.3110	VOL	/VOL		
INITIAL SOIL WATER CONTE	NT	=	0.4	520 \	/OL/V	DL	
EFFECTIVE SAT. HYD. COND	). =	=	0.12000	0000	000E-	05 CM	/SEC

## LAYER 8

# TYPE 2 - LATERAL DRAINAGE LAYER<br/>MATERIAL TEXTURE NUMBER 20THICKNESS=0.50CMPOROSITY=0.8500VOL/VOLFIELD CAPACITY=0.0100VOL/VOL

WILTING POINT =		0.0050 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.0100 VOL/VO	L
EFFECTIVE SAT. HYD. COND.	=	10.000000000	CM/SEC

TYPE 2 - LATERAL DRAINAGE LAYER							
MATERIAL TEXTURE NUMBER 21							
THICKNESS =		30.00	CM				
POROSITY =		0.3970	VOL/VOL				
FIELD CAPACITY =		0.0320	VOL/VOL				
WILTING POINT =		0.0130	VOL/VOL				
INITIAL SOIL WATER CONTENT	. =	0.0	335 VOL/V	/OL			
EFFECTIVE SAT. HYD. COND.	=	0.30000	0000000	CN	//SEC		

## LAYER 10

#### TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20

WATERIAL TEATURE NUMBER 20						
THICKNESS	=		0.50	CM		
POROSITY	=		0.8500	VOL/VOL		
FIELD CAPACITY	=		0.0100	VOL/VOL		
WILTING POINT	=		0.0050	VOL/VOL		
INITIAL SOIL WATER COM	<b>VTENT</b>	=	0.0	100 VOL/V	OL	
EFFECTIVE SAT. HYD. CO	OND.	=	10.000	0000000	CM/SEC	

## LAYER 11

## TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTU	RE	NUMBEF	R 2		
THICKNESS =		37.00	CM		
POROSITY =		0.4370	VOL/VOI	L	
FIELD CAPACITY =	:	0.0620	VOL/VO	)L	
WILTING POINT =		0.0240	VOL/VO	L	
INITIAL SOIL WATER CONTENT	- =	.00	621 VOL	/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.58000	0000000	E-02 CM/SE	С
SLOPE =		0.50 F	PERCENT	Г	
DRAINAGE LENGTH	=	225.0	METE	RS	

#### LAYER 12

#### TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35

MATERIAL TEXTORE NUMBER 33						
THICKNESS =	0.10 CM					
POROSITY =	0.0000 VOL/VOL					
FIELD CAPACITY =	0.0000 VOL/VOL					
WILTING POINT =	0.0000 VOL/VOL					
INITIAL SOIL WATER CONTENT	= 0.0000 VOL/VOL					
EFFECTIVE SAT. HYD. COND.	= 0.20000000000E-12 CM/SEC					
FML PINHOLE DENSITY	= 2.00 HOLES/HECTARE					
FML INSTALLATION DEFECTS	= 2.00 HOLES/HECTARE					
FML PLACEMENT QUALITY	= 4 - POOR					

## LAYER 13

#### TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 28 THICKNESS = 75.00 CM POROSITY = 0.4520 VOL/VOL FIELD CAPACITY = 0.4110 VOL/VOL WILTING POINT = 0.3110 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4520 VOL/VOL

LAYER 14 -----

THICP PORC FIELD WILTI	TYPE 1 - MATE (NESS OSITY O CAPACITY NG POINT	VERTICAL	- PERCO TURE N = 1 ¹ = = =	DLATION LAY UMBER 9 00.00 CM 0.5010 VOL/ 0.2840 VOL 0.1350 VOL	YER VOL VOL VOL	
EFFE	CTIVE SAT. H	IYD. CONI	D. =	0.2839 \ 0.190000000	000E-03 CM/	SEC
	GENERAL	DESIGN A	ND EVA	PORATIVE Z	ONE DATA	
NOTE:	SCS RUNOF SOIL DATA FAIR STANE AND A SLOF	F CURVE BASE USII O OF GRAS PE LENGT	NUMBE NG SOIL SS, A SU H OF 2	R WAS COM . TEXTURE # JRFACE SLC 25. METERS	IPUTED FRO # 9 WITH A PPE OF 25.% 5.	M DEFAULT
SCS RUI FRACTIO AREA PI EVAPOF INITIAL \ UPPER I LOWER INITIAL \ INITIAL \ TOTAL II TOTAL S	NOFF CURVE DN OF AREA ROJECTED C ATIVE ZONE WATER IN EV LIMIT OF EV LIMIT OF EV SNOW WATE WATER IN LA NITIAL WATE SUBSURFACE	E NUMBER ALLOWING IN HORIZO DEPTH APORATIV PORATIV R YER MATI R E INFLOW	G RUNC DNTAL P VE ZONI E STOR E STOR ERIALS	= 82 FF = 7 LANE = 20. E = 5 AGE = . AGE = . AGE = . 565. =	2.02 100.0 PER 1.0000 HEC 0 CM 0.23 CM 8.740 CM 0.480 CM 3 CM 277 CM CM 00 MM/YR	CENT CTARES
	EVAPOTR	ANSPIRA	FION AN	D WEATHEF	R DATA	
NOTE:	EVAPOTRA Ottawa	NSPIRATIO C	ON DATA CANA	A WAS OBTA	NNED FROM	
STA MAX STA ENI EVA AVE AVE AVE AVE	ATION LATITL XIMUM LEAF RT OF GROVID OF GROWID PORATIVE Z RAGE ANNU RAGE 1ST C RAGE 2ND C RAGE 3RD C RAGE 4TH C	JDE AREA IND WING SEA NG SEASC ONE DEP JAL WIND QUARTER QUARTER QUARTER	EX SON (JU DN (JULI TH SPEED RELATI RELATI RELATI RELATI	= 45 = JLIAN DATE) AN DATE) = /E HUMIDIT /E HUMIDIT /E HUMIDIT /E HUMIDIT	5.32 DEGREE 4.00 = 123 = 282 20.0 CM = 17.70 KPH Y = 66.00 % Y = 73.00 % Y = 79.00 %	S 1 6 6 6
NOTE:	PRECIPITAT COEFFICIEI	TION DATA	A WAS S Ottaw	YNTHETICA a	LLY GENERA ON	TED USING
	NORMAL	MEAN MO	NTHLY I	PRECIPITAT	ION (MM)	
JAN/JUL	FEB/AUG	MAR/S	EP /	APR/OCT	MAY/NOV	JUN/DEC
57.7 76.8	50.4 95.0	62.2 82.4	77.7 87.3	83.5 83.7	81.5 84.3	
NOTE:	TEMPERATI COEFFICIEI	JRE DATA NTS FOR	WAS S Ottaw	YNTHETICA a	LLY GENERA ON	TED USING
NC	RMAL MEAN	MONTHL	Y TEMP	ERATURE (E	EGREES CE	LSIUS)
JAN/JUL	FEB/AUG	MAR/S	EP /	APR/OCT	MAY/NOV	JUN/DEC
-10.5	-8.3	-2.4	6.4	13.3	17.9	

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON AND STATION LATITUDE = 45.37 DEGREES

7.7

1.0

-7.2

21.2

19.6

14.3

******

#### 

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 20						
	MM		CU. MET	ERS PER	CENT	
PRECIPITATION	904.39	( 104.063	3) 904	44.0 100.	00	
RUNOFF	238.185	( 70.2486	) 238	31.85 26.3	36	
EVAPOTRANSPIRATION	429.4	488 (48.	3066)	4294.88	47.489	
LATERAL DRAINAGE COLLEC FROM LAYER 5	TED 10	)7.68433 (	0.56176)	1076.843	11.90678	
PERCOLATION/LEAKAGE THE LAYER 7	ROUGH	28.00435 (	( 13.33787)	280.04	3 3.09647	
AVERAGE HEAD ON TOP OF LAYER 6	3608.	919 ( 1588.	742)			
LATERAL DRAINAGE COLLEC FROM LAYER 11	TED 1	9.07765(1	4.38698)	190.776	2.10944	
PERCOLATION/LEAKAGE THE LAYER 13	ROUGH	1.58442 (	0.96538)	15.844	4 0.17519	
AVERAGE HEAD ON TOP OF LAYER 12	204.	581(130.	521)			
PERCOLATION/LEAKAGE THE LAYER 14	ROUGH	1.67791 (	1.05222)	16.779	9 0.18553	
CHANGE IN WATER STORAGE	E 10	8.282 (	2.7945)	1082.82	11.973	

PEAK DAILY VALUES FOR YE	ARS 1 T	HROUGH 20	and the	ir dates (DDDYYYY)
	(MM)	(CU. METERS	)	
PRECIPITATION	54.00	540.000	000 144001	2
RUNOFF	131.337	1313.371	66 68001	7
DRAINAGE COLLECTED FROM LAYER	5	0.29699	2.96988	3480020
PERCOLATION/LEAKAGE THROUGH L	AYER 7	0.136980	1.36980	3480020
AVERAGE HEAD ON TOP OF LAYER	6 60	78.541		
MAXIMUM HEAD ON TOP OF LAYER	6 89	86.114		
LOCATION OF MAXIMUM HEAD IN LAY (DISTANCE FROM DRAIN)	ER 5 2608.3	METERS		
DRAINAGE COLLECTED FROM LAYER	.11	0.13103	1.31034	1180020
PERCOLATION/LEAKAGE THROUGH L	AYER 13	0.007629	0.07629	9 2320017
AVERAGE HEAD ON TOP OF LAYER 12	2 37	70.095		
MAXIMUM HEAD ON TOP OF LAYER 12	2 48	33.423		
LOCATION OF MAXIMUM HEAD IN LAY (DISTANCE FROM DRAIN)	ER 11 91.7	METERS		
PERCOLATION/LEAKAGE THROUGH L	AYER 14	0.080335	0.80335	5 2030006
SNOW WATER	236.91	2369.1	375 7300 ²	12

## MINIMUM VEG. SOIL WATER (VOL/VOL) 0.0240

0.3745

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

******

	FINAL WATER STORAGE AT END OF YEAR						
	LAYER	(CN	1)	(VOL/VOL)			
	1	5.195	4	0.1732			
	2	743.601	6	0.4131			
	3	0.425	0	0.8500			
	4	11.910	0	0.3970			
	5	0.510	0	0.8500			
	6	0.000	0	0.0000			
	7	33.900	0	0.4520			
	8	0.041	9	0.0837			
	9	1.745	6	0.0582			
	10	0.041	9	0.0837			
	11	16.168	80	0.4370			
	12	0.000	0	0.0000			
	13	33.900	00	0.4520			
	14	28.205	50	0.2821			
	SNOW WATE	R	0.913				
*****	*****	*********	*******	*****	**		

***********	***************************************					
**********	***************************************					
**	**					
**	**					
**	HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE		**			
**	HELP MODEL VERSION 3.07 (1 November 1997)	**				
**	DEVELOPED BY ENVIRONMENTAL LABORATORY		**			
**	USAE WATERWAYS EXPERIMENT STATION		**			
**	FOR USEPA RISK REDUCTION ENGINEERING LABORATORY		**			
**	**					
**	**					
***************************************						
**********	***************************************					

 PRECIPITATION DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather1.dat

 TEMPERATURE DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather2.dat

 SOLAR RADIATION DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather3.dat

 EVAPOTRANSPIRATION DATA
 C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat

 SOIL AND DESIGN DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat

 OUTPUT DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_gappas55.inp

 OUTPUT DATA FILE:
 C:\WHI\UNSAT22\data\P13364.VHP_392355.inp

TIME: 9:49 DATE: 7/22/2011

TITLE: Interim Cover - Silty Clay, with Runoff

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

#### LAYER 1

**TYPE 1 - VERTICAL PERCOLATION LAYER** MATERIAL TEXTURE NUMBER 9 THICKNESS 30.00 CM = 0.4520 VOL/VOL POROSITY = FIELD CAPACITY 0.4110 VOL/VOL = WILTING POINT 0.3110 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.4373 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.1200000000E-05 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

## LAYER 2

**TYPE 1 - VERTICAL PERCOLATION LAYER** MATERIAL TEXTURE NUMBER 18 THICKNESS = 1800.00 CM 0.6710 VOL/VOL POROSITY = FIELD CAPACITY 0.2920 VOL/VOL = WILTING POINT 0.0770 VOL/VOL = INITIAL SOIL WATER CONTENT = 0.2920 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.100000224000E-02 CM/SEC

## LAYER 3

#### TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20 THICKNESS = 0.50 CM

POROSITY	=	0.8500 VOL/VOL	
FIELD CAPACITY	=	0.0100 VOL/VOL	
WILTING POINT	=	0.0050 VOL/VOL	
INITIAL SOIL WATER CONTEN	NT =	0.0512 VOL/VC	DL
EFFECTIVE SAT. HYD. COND	. =	10.000000000	CM/SEC

TYPE 2 - LATERAL DRAINAGE LAYER							
	JR	Eľ	NOMBER	K 21			
THICKNESS	=		30.00	CM			
POROSITY =	=		0.3970	VOL/V	ЭL		
FIELD CAPACITY	=		0.0320	VOL/V	OL		
WILTING POINT	=		0.0130	VOL/V	OL		
INITIAL SOIL WATER CONTEN	Т	=	0.1	572 VO	L/VO	L	
EFFECTIVE SAT. HYD. COND.		=	0.30000	000000	00	CM/SEC	;

LAYER 5

TYPE 2 - LATERAL D	RAIN	AGE L	AYER	
MATERIAL TEXTU	RE NI	JMBEF	R 34	
THICKNESS =		0.60	CM	
POROSITY =	(	0.8500	VOL/VOL	
FIELD CAPACITY =		0.0100	VOL/VOL	
WILTING POINT =		0.0050	VOL/VOL	
INITIAL SOIL WATER CONTENT		0.8	500 VOL/VO	L
EFFECTIVE SAT. HYD. COND.	=	33.000	0000000	CM/SEC
SLOPE =	0	.50 P	PERCENT	
DRAINAGE LENGTH	= 1	0000.0	METERS	;

## LAYER 6

TYPE 4 - FLEXIBLE MEMBRANE LINER						
MATERIAL TEXTU	IRE N	UMBER	35			
THICKNESS =		0.10	CM			
POROSITY =		0.0000	VOL/V	ЭL		
FIELD CAPACITY =	=	0.0000	VOL/V	OL		
WILTING POINT =		0.0000	VOL/V	OL		
INITIAL SOIL WATER CONTENT	Г =	0.0	000 VC	L/VOL		
EFFECTIVE SAT. HYD. COND.	= (	0.20000	000000	0E-12	CM/SEC	
FML PINHOLE DENSITY	=	2.00	HOL	ES/HE	CTARE	
FML INSTALLATION DEFECTS	=	2.0	00 HC	DLES/H	ECTARE	
FML PLACEMENT QUALITY	=	4 - PO	OR			

## LAYER 7

TYPE 3 - BARRIE	R SC	DIL LINEF	२	
MATERIAL TEXT	JRE	NUMBER	R 28	
THICKNESS	=	75.00	CM	
POROSITY =	=	0.4520	VOL/VOL	
FIELD CAPACITY	=	0.4110	) VOL/VOL	
WILTING POINT	=	0.3110	VOL/VOL	
INITIAL SOIL WATER CONTEN	T =	0.4	520 VOL/VOL	
EFFECTIVE SAT. HYD. COND.	=	0.12000	0000000E-05 CM/SI	EC

## LAYER 8

## TYPE 2 - LATERAL DRAINAGE LAYER<br/>MATERIAL TEXTURE NUMBER 20THICKNESS=0.50CMPOROSITY=0.8500VOL/VOLFIELD CAPACITY=0.0100VOL/VOL

WILTING POINT =		0.0050 VOL/VOL	
INITIAL SOIL WATER CONTENT	=	0.0100 VOL/VO	L
EFFECTIVE SAT. HYD. COND.	=	10.000000000	CM/SEC

TYPE 2 - LATERAL DRAINAGE LAYER								
MATERIAL TEXTU	MATERIAL TEXTURE NUMBER 21							
THICKNESS =		30.00	CM					
POROSITY =		0.3970	VOL/VOL					
FIELD CAPACITY =		0.0320	) VOL/VOL	_				
WILTING POINT =		0.0130	VOL/VOL	-				
INITIAL SOIL WATER CONTENT	. =	0.0	323 VOL/	VOL				
EFFECTIVE SAT. HYD. COND.	=	0.30000	0000000	C	CM/SEC			

## LAYER 10

-----

## TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTURE NUMBER 20						
THICKNESS	=		0.50	CM		
POROSITY	=		0.8500	VOL/VO	L	
FIELD CAPACITY	=		0.0100	VOL/VC	DL	
WILTING POINT	=		0.0050	VOL/VC	)L	
INITIAL SOIL WATER CONTE	NT	=	0.0	100 VOL	_/VOL	-
EFFECTIVE SAT. HYD. CONE	D.	=	10.000	0000000	)	CM/SEC

## LAYER 11

## TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTURE NUMBER 2						
THICKNESS =		37.00	CM			
POROSITY =		0.4370	VOL/VOL			
FIELD CAPACITY =		0.0620	VOL/VOL			
WILTING POINT =		0.0240	VOL/VOL			
INITIAL SOIL WATER CONTENT	- =	0.0	620 VOL/V	'OL		
EFFECTIVE SAT. HYD. COND.	=	0.58000	0000000E	-02 CM/SEC		
SLOPE =		0.50 F	PERCENT			
DRAINAGE LENGTH	=	225.0	METER	S		

## LAYER 12

## TYPE 4 - FLEXIBLE MEMBRANE LINER

MATERIAL TEXTURE NUMBER 35					
THICKNESS =	0.10 CM				
POROSITY =	0.0000 VOL/VOL				
FIELD CAPACITY =	= 0.0000 VOL/VOL				
WILTING POINT =	0.0000 VOL/VOL				
INITIAL SOIL WATER CONTENT	= 0.0000 VOL/VOL				
EFFECTIVE SAT. HYD. COND.	= 0.20000000000E-12 CM/SEC				
FML PINHOLE DENSITY	= 2.00 HOLES/HECTARE				
FML INSTALLATION DEFECTS	= 2.00 HOLES/HECTARE				
FML PLACEMENT QUALITY	= 4 - POOR				

## LAYER 13

#### TYPE 3 - BARRIER SOIL LINER MATERIAL TEXTURE NUMBER 28 THICKNESS = 75.00 CM POROSITY = 0.4520 VOL/VOL FIELD CAPACITY = 0.4110 VOL/VOL WILTING POINT = 0.3110 VOL/VOL INITIAL SOIL WATER CONTENT = 0.4520 VOL/VOL

LAYER 14 -----

THIC	THICKNESS = 100.00 CM							
FIELD	CAPACITY		=	0.50	840 VOL	VOL /VOL		
WILTI			=	0.13	350 VOL	VOL		
EFFE	EFFECTIVE SAT. HYD. COND. = 0.19000000000E-03 CM/SEC							
	GENERAL	DESIGN AI	ND EV	APOF	RATIVE Z	ZONE DATA		
NOTE:	SCS RUNOF SOIL DATA FAIR STANE AND A SLOF	F CURVE BASE USIN OF GRAS PE LENGTI	NUME NG SO SS, A S H OF	ER W IL TE SURF/ 225.	/AS CON XTURE # ACE SLC METERS	MPUTED FRO # 9 WITH A DPE OF 25.% S.	M DEFAULT	
SCS RUI FRACTIO AREA PI EVAPOF INITIAL V UPPER I LOWER INITIAL V TOTAL II TOTAL S	SCS RUNOFF CURVE NUMBER=82.02FRACTION OF AREA ALLOWING RUNOFF=100.0PERCENTAREA PROJECTED ON HORIZONTAL PLANE=1.0000 HECTARESEVAPORATIVE ZONE DEPTH=20.0CMINITIAL WATER IN EVAPORATIVE ZONE=9.009CMUPPER LIMIT OF EVAPORATIVE STORAGE=9.040CMLOWER LIMIT OF EVAPORATIVE STORAGE=6.220CMINITIAL SNOW WATER=3.716CMINITIAL WATER IN LAYER MATERIALS=643.438CMTOTAL INITIAL WATER=647.155CMTOTAL SUBSURFACE INFLOW=0.00MM/YR							
	EVAPOTR	ANSPIRAT	TON A	ND W	EATHE	R DATA		
NOTE:	EVAPOTRA Ottawa	NSPIRATIC C	ON DA ANA	TA W	AS OBT <i>I</i>	AINED FROM		
STA MAZ STA ENI EVA AVE AVE AVE AVE	ATION LATITL KIMUM LEAF RT OF GROVID OF GROWID PORATIVE Z RAGE ANNU RAGE 1ST G RAGE 2ND ( RAGE 3RD ( RAGE 4TH C	IDE AREA IND VING SEAS NG SEASO ONE DEP AL WIND S UARTER F QUARTER F QUARTER F	EX SON (JUI FH SPEEE RELAT RELAT RELAT	JULIA LIAN I IVE F IVE F IVE F IVE F	= 45 N DATE) DATE) = iUMIDIT iUMIDIT iUMIDIT	5.32 DEGREE 4.00 = 123 = 282 20.0 CM = 17.70 KPH Y = 71.00 % Y = 66.00 % Y = 73.00 % Y = 79.00 %	S I 6 6	
NOTE:	PRECIPITAT COEFFICIEI	TION DATA	WAS Otta	SYN1 wa	HETICA	LLY GENERA ON	TED USING	
	NORMAL		NTHLY	′ PRE	CIPITAT	ION (MM)		
JAN/JUL	FEB/AUG	MAR/SE	P	APR	/OCT	MAY/NOV	JUN/DEC	
57.7 76.8	50.4 95.0	62.2 82.4	77.7 87.3	3	83.5 83.7	81.5 84.3		
NOTE:	TEMPERAT COEFFICIEI	JRE DATA NTS FOR	WAS Otta	SYNT wa	HETICA	LLY GENERA ON	TED USING	
NC	ORMAL MEAN	MONTHLY	Y TEM	PERA	TURE (E	DEGREES CE	LSIUS)	
JAN/JUL	FEB/AUG	MAR/SE	EP	APR	/OCT	MAY/NOV	JUN/DEC	
-10.5	-8.3	-2.4	6.4		13.3	17.9		

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON AND STATION LATITUDE = 45.37 DEGREES

1.0

-7.2

7.7

21.2

19.6

14.3

#### ******

AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 20						
	MM	Cl	J. METERS	PERG	CENT	
PRECIPITATION	904.39	( 104.063)	9044.0	100.0	0	
RUNOFF	506.405	( 92.1686)	5064.05	55.99	)4	
EVAPOTRANSPIRATION	377.1	196 (43.7506	6) 3771	1.96	41.707	
LATERAL DRAINAGE COLLEC FROM LAYER 5	TED 2	3.74165 ( 11.26	6074) 2	237.417	2.62514	
PERCOLATION/LEAKAGE THR LAYER 7	OUGH	0.08668 ( 0.1	10137)	0.867	0.00958	
AVERAGE HEAD ON TOP OF LAYER 6	9.3	31 ( 11.904)				
LATERAL DRAINAGE COLLEC FROM LAYER 11	TED (	0.06718 ( 0.03	3321)	0.672	0.00743	
PERCOLATION/LEAKAGE THR LAYER 13	OUGH	0.01091 ( 0.0	00484)	0.109	0.00121	
AVERAGE HEAD ON TOP OF LAYER 12	0.8	26 ( 0.408)				
PERCOLATION/LEAKAGE THR LAYER 14	OUGH	0.00802 ( 0.0	02468)	0.080	0.00089	
CHANGE IN WATER STORAGE	E -3	.022 ( 1.966	60) -3 ******	0.22	-0.334	

PEAK DAILY VALUES FOR YE	ARS 1 T	HROUGH 20	and the	r dates (DDDYYYY)
	(MM)	(CU. METERS	5)	
PRECIPITATION	54.00	540.00	000 144001	2
RUNOFF	134.109	1341.08	964 68001	7
DRAINAGE COLLECTED FROM LAYER	5	0.19880	1.98801	3530001
PERCOLATION/LEAKAGE THROUGH L	AYER 7	0.002561	0.02561	3530001
AVERAGE HEAD ON TOP OF LAYER	6 1 ⁷	3.046		
MAXIMUM HEAD ON TOP OF LAYER	6 22	21.582		
LOCATION OF MAXIMUM HEAD IN LAY (DISTANCE FROM DRAIN)	ER 5 199.3	METERS		
DRAINAGE COLLECTED FROM LAYER	11	0.00042	0.00416	2740003
PERCOLATION/LEAKAGE THROUGH L	AYER 13	0.000063	0.00063	2740003
AVERAGE HEAD ON TOP OF LAYER 12	2	1.868		
MAXIMUM HEAD ON TOP OF LAYER 12	2	3.678		
LOCATION OF MAXIMUM HEAD IN LAY (DISTANCE FROM DRAIN)	ER 11 3.5 I	METERS		
PERCOLATION/LEAKAGE THROUGH L	AYER 14	0.080195	0.80195	920006
SNOW WATER	236.91	2369.7	375 73001	2

## MINIMUM VEG. SOIL WATER (VOL/VOL) 0.3110

0.4518

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

______

******

FINAL WATER STORAGE AT END OF YEAR					
	LAYER	(CM)	(VOL/VOL)		
	1	13.1233	0.4374		
	2	525.6000	0.2920		
	3	0.0246	0.0492		
	4	1.5921	0.0531		
	5	0.3665	0.6109		
	6	0.0000	0.0000		
	7	33.9000	0.4520		
	8	0.0050	0.0100		
	9	0.9600	0.0320		
	10	0.0050	0.0100		
	11	2.3223	0.0628		
	12	0.0000	0.0000		
	13	33.9000	0.4520		
	14	28.3978	0.2840		
	SNOW WATE	R 0.91	3		
*****	*****	*****	*****	**	

** ** ** ** ** HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE ** ** HELP MODEL VERSION 3.07 (1 November 1997) ** DEVELOPED BY ENVIRONMENTAL LABORATORY ** ** USAE WATERWAYS EXPERIMENT STATION ** FOR USEPA RISK REDUCTION ENGINEERING LABORATORY ** ** ** ** ** *****

PRECIPITATION DATA FILE: C:\WHI\UNSAT22\data\P13364.VHP_weather1.dat TEMPERATURE DATA FILE: C:\WHI\UNSAT22\data\P13364.VHP_weather2.dat SOLAR RADIATION DATA FILE: C:\WHI\UNSAT22\data\P13364.VHP_weather3.dat EVAPOTRANSPIRATION DATA: C:\WHI\UNSAT22\data\P13364.VHP_weather4.dat SOIL AND DESIGN DATA FILE: C:\WHI\UNSAT22\data\P13364.VHP_ 392228.inp OUTPUT DATA FILE: C:\WHI\UNSAT22\data\P13364.VHP_ 392228.prt

TIME: 11:39 DATE: 9/22/2011

TITLE: Final Cover

*****

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE COMPUTED AS NEARLY STEADY-STATE VALUES BY THE PROGRAM.

## LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 7 THICKNESS = 15.00 CM POROSITY = 0.4730 VOL/VOL FIELD CAPACITY = 0.2220 VOL/VOL WILTING POINT = 0.1040 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3762 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.520001164800E-03 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 4.90 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

#### LAYER 2

-----

#### TYPE 3 - BARRIER SOIL LINER

MATERIAL TE	EXTU	RE NUM	IBER 2	28
THICKNESS	=	60.00	CM	
POROSITY	=	0.4370	VOL/V	OL
FIELD CAPACITY	=	0.06	20 VO	L/VOL
WILTING POINT	=	0.024	10 VOL	/VOL
# LAYER 3

 $\begin{array}{rcl} \mbox{TYPE 1 - VERTICAL PERCOLATION LAYER} \\ \mbox{MATERIAL TEXTURE NUMBER 18} \\ \mbox{THICKNESS} &= 2800.00 \mbox{ CM} \\ \mbox{POROSITY} &= 0.6710 \mbox{VOL/VOL} \\ \mbox{FIELD CAPACITY} &= 0.2920 \mbox{VOL/VOL} \\ \mbox{WILTING POINT} &= 0.0770 \mbox{VOL/VOL} \\ \mbox{INITIAL SOIL WATER CONTENT} &= 0.2964 \mbox{VOL/VOL} \\ \mbox{EFFECTIVE SAT. HYD. COND.} &= 0.100000224000E-02 \mbox{CM/SEC} \\ \end{array}$ 

# LAYER 4

 $\begin{array}{rcl} \mbox{TYPE 2 - LATERAL DRAINAGE LAYER} \\ \mbox{MATERIAL TEXTURE NUMBER 20} \\ \mbox{THICKNESS} &= 0.50 \ \mbox{CM} \\ \mbox{POROSITY} &= 0.8500 \ \mbox{VOL/VOL} \\ \mbox{FIELD CAPACITY} &= 0.0100 \ \mbox{VOL/VOL} \\ \mbox{WILTING POINT} &= 0.0050 \ \mbox{VOL/VOL} \\ \mbox{INITIAL SOIL WATER CONTENT} &= 0.1486 \ \mbox{VOL/VOL} \\ \mbox{EFFECTIVE SAT. HYD. COND.} &= 10.000000000 \ \mbox{CM/SEC} \\ \end{array}$ 

#### LAYER 5

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 21 THICKNESS = 30.00 CM POROSITY = 0.3970 VOL/VOL FIELD CAPACITY = 0.0320 VOL/VOL WILTING POINT = 0.0130 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0834 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.30000000000 CM/SEC

#### LAYER 6

-----

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 34 THICKNESS = 0.60 CM POROSITY = 0.8500 VOL/VOL FIELD CAPACITY = 0.0100 VOL/VOL WILTING POINT = 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.3176 VOL/VOL EFFECTIVE SAT. HYD. COND. = 33.000000000 CM/SEC SLOPE = 0.50 PERCENT DRAINAGE LENGTH = 225.0 METERS

LAYER 7

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.10 CM POROSITY = 0.0000 VOL/VOL FIELD CAPACITY = 0.0000 VOL/VOL WILTING POINT = 0.0000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.20000000000E-12 CM/SEC FML PINHOLE DENSITY = 2.00 HOLES/HECTARE FML INSTALLATION DEFECTS = 2.00 HOLES/HECTARE FML PLACEMENT QUALITY = 4 - POOR

#### LAYER 8

-----

 $\begin{array}{rcl} \mbox{TYPE 3 - BARRIER SOIL LINER} \\ \mbox{MATERIAL TEXTURE NUMBER 28} \\ \mbox{THICKNESS} &= 75.00 \ \mbox{CM} \\ \mbox{POROSITY} &= 0.4520 \ \mbox{VOL/VOL} \\ \mbox{FIELD CAPACITY} &= 0.4110 \ \mbox{VOL/VOL} \\ \mbox{WILTING POINT} &= 0.3110 \ \mbox{VOL/VOL} \\ \mbox{INITIAL SOIL WATER CONTENT} &= 0.4520 \ \mbox{VOL/VOL} \\ \mbox{EFFECTIVE SAT. HYD. COND.} &= 0.120000000000E-05 \ \mbox{CM/SEC} \\ \end{array}$ 

#### LAYER 9

-----

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 20 THICKNESS = 0.50 CM POROSITY = 0.8500 VOL/VOL FIELD CAPACITY = 0.0100 VOL/VOL WILTING POINT = 0.0050 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

# LAYER 10

TYPE 2 - LATERAL DRAINAGE LAYER MATERIAL TEXTURE NUMBER 21 THICKNESS = 30.00 CM POROSITY = 0.3970 VOL/VOL FIELD CAPACITY = 0.0320 VOL/VOL WILTING POINT = 0.0130 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0320 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.30000000000 CM/SEC

#### LAYER 11

-----

#### TYPE 2 - LATERAL DRAINAGE LAYER

MATERIAL TEXTURE NUMBER 20				
THICKNESS	=	0.50 CM		
POROSITY	=	0.8500 VOL/VOL		
FIELD CAPACITY	=	0.0100 VOL/VOL		
WILTING POINT	=	0.0050 VOL/VOL		

INITIAL SOIL WATER CONTENT = 0.0100 VOL/VOL EFFECTIVE SAT. HYD. COND. = 10.0000000000 CM/SEC

#### LAYER 12

-----

 $\begin{array}{rcl} \mbox{TYPE 2 - LATERAL DRAINAGE LAYER} & \mbox{MATERIAL TEXTURE NUMBER 2} \\ \mbox{MATERIAL TEXTURE NUMBER 2} \\ \mbox{THICKNESS} &= 37.00 \ \mbox{CM} \\ \mbox{POROSITY} &= 0.4370 \ \mbox{VOL/VOL} \\ \mbox{FIELD CAPACITY} &= 0.0620 \ \mbox{VOL/VOL} \\ \mbox{WILTING POINT} &= 0.0240 \ \mbox{VOL/VOL} \\ \mbox{INITIAL SOIL WATER CONTENT} &= 0.0620 \ \mbox{VOL/VOL} \\ \mbox{EFFECTIVE SAT. HYD. COND.} &= 0.580000000000E-02 \ \mbox{CM/SEC} \\ \mbox{SLOPE} &= 0.50 \ \mbox{PERCENT} \\ \mbox{DRAINAGE LENGTH} &= 225.0 \ \mbox{METERS} \\ \end{array}$ 

#### LAYER 13

-----

TYPE 4 - FLEXIBLE MEMBRANE LINER MATERIAL TEXTURE NUMBER 35 THICKNESS = 0.10 CM POROSITY = 0.0000 VOL/VOL FIELD CAPACITY = 0.0000 VOL/VOL WILTING POINT = 0.0000 VOL/VOL INITIAL SOIL WATER CONTENT = 0.0000 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.20000000000E-12 CM/SEC FML PINHOLE DENSITY = 2.00 HOLES/HECTARE FML INSTALLATION DEFECTS = 2.00 HOLES/HECTARE FML PLACEMENT QUALITY = 4 - POOR

#### LAYER 14

-----

 $\begin{array}{rcl} \mbox{TYPE 3 - BARRIER SOIL LINER} \\ \mbox{MATERIAL TEXTURE NUMBER 28} \\ \mbox{THICKNESS} &= 75.00 \mbox{ CM} \\ \mbox{POROSITY} &= 0.4520 \mbox{VOL/VOL} \\ \mbox{FIELD CAPACITY} &= 0.4110 \mbox{VOL/VOL} \\ \mbox{WILTING POINT} &= 0.3110 \mbox{VOL/VOL} \\ \mbox{INITIAL SOIL WATER CONTENT} &= 0.4520 \mbox{VOL/VOL} \\ \mbox{EFFECTIVE SAT. HYD. COND.} &= 0.120000000000E-05 \mbox{CM/SEC} \\ \end{array}$ 

#### LAYER 15

-----

 $\begin{array}{rcl} \mbox{TYPE 1 - VERTICAL PERCOLATION LAYER} \\ \mbox{MATERIAL TEXTURE NUMBER 9} \\ \mbox{THICKNESS} &= 100.00 \ \mbox{CM} \\ \mbox{POROSITY} &= 0.5010 \ \mbox{VOL/VOL} \\ \mbox{FIELD CAPACITY} &= 0.2840 \ \mbox{VOL/VOL} \\ \mbox{WILTING POINT} &= 0.1350 \ \mbox{VOL/VOL} \\ \mbox{INITIAL SOIL WATER CONTENT} &= 0.2839 \ \mbox{VOL/VOL} \\ \mbox{EFFECTIVE SAT. HYD. COND.} &= 0.190000000000E-03 \ \mbox{CM/SEC} \\ \end{array}$ 

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE # 7 WITH A GOOD STAND OF GRASS, A SURFACE SLOPE OF 25.% AND A SLOPE LENGTH OF 225. METERS.

SCS RUNOFF CURVE NUMBER = 67.59 FRACTION OF AREA ALLOWING RUNOFF = 100.0 PERCENT AREA PROJECTED ON HORIZONTAL PLANE = 1.0000 HECTARES EVAPORATIVE ZONE DEPTH = 15.0 CM INITIAL WATER IN EVAPORATIVE ZONE = 6.198 CM UPPER LIMIT OF EVAPORATIVE STORAGE = 7.095 CM LOWER LIMIT OF EVAPORATIVE STORAGE = 1.560 CM INITIAL SNOW WATER = 3.716 CM INITIAL WATER IN LAYER MATERIALS = 964.060 CM TOTAL INITIAL WATER = 967.777 CM TOTAL SUBSURFACE INFLOW = 0.00 MM/YR

# EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM Ottawa CANA

STATION LATITUDE = 45.32 DEGREES MAXIMUM LEAF AREA INDEX = 4.00 START OF GROWING SEASON (JULIAN DATE) = 123 END OF GROWING SEASON (JULIAN DATE) = 282 EVAPORATIVE ZONE DEPTH = 15.0 CM AVERAGE ANNUAL WIND SPEED = 17.70 KPH AVERAGE 1ST QUARTER RELATIVE HUMIDITY = 71.00 % AVERAGE 2ND QUARTER RELATIVE HUMIDITY = 66.00 % AVERAGE 3RD QUARTER RELATIVE HUMIDITY = 73.00 % AVERAGE 4TH QUARTER RELATIVE HUMIDITY = 79.00 %

# NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON

NORMAL MEAN MONTHLY PRECIPITATION (MM)

JAN/JUL FEB/AUG MAR/SEP APR/OCT MAY/NOV JUN/DEC

57.7	50.4	62.2	77.7	83.5	81.5
76.8	95.0	82.4	87.3	83.7	84.3

#### NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES CELSIUS)

JAN/JUL	FEB/	AUG	MAR/SEP	APR/0	ССТ	MAY/NOV	JUN/DEC
 -10.5 21.2	-8.3 19.6	 -2.4 14.3	 6.4 7.7	 13.3 1.0	 17.9 -7.2	9	

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR Ottawa ON AND STATION LATITUDE = 45.37 DEGREES ***** AVERAGE ANNUAL TOTALS & (STD. DEVIATIONS) FOR YEARS 1 THROUGH 20 MM CU. METERS PERCENT ----------PRECIPITATION 904.39 (104.063) 9044.0 100.00 RUNOFF 240.066 (68.9372) 2400.66 26.544 EVAPOTRANSPIRATION 446.247 (49.2948) 4462.47 49.342 PERCOLATION/LEAKAGE THROUGH 219.62388 (48.65881) 2196.239 24.28407 LAYER 2 AVERAGE HEAD ON TOP 0.332 ( 0.069) OF LAYER 2 LATERAL DRAINAGE COLLECTED 225.96916 (65.58995) 2259.692 24.98567 FROM LAYER 6 PERCOLATION/LEAKAGE THROUGH 0.00634 (0.00172) 0.063 0.00070 LAYER 8 AVERAGE HEAD ON TOP 0.487 ( 0.143) OF LAYER 7 LATERAL DRAINAGE COLLECTED 0.00438 (0.00085) 0.044 0.00048 FROM LAYER 12 PERCOLATION/LEAKAGE THROUGH 0.00100 (0.00017) 0.010 0.00011 LAYER 14 AVERAGE HEAD ON TOP 0.054 ( 0.010) OF LAYER 13 PERCOLATION/LEAKAGE THROUGH 0.00000 (0.00000) 0.000 0.00000 LAYER 15 CHANGE IN WATER STORAGE -7.892 (2.2915) -78.92 -0.873 PEAK DAILY VALUES FOR YEARS 1 THROUGH 20 and their dates (DDDYYYY)

	(MM) (CU. ME	TERS)		
PRECIPITATION	54.00	540.00000 1440012		
RUNOFF	132.996	1329.95583 680017		
PERCOLATION/LEAKAGE THROUGH LAYER 2 36.713547 367.13547 1190003				
AVERAGE HEAD ON TO	P OF LAYER 2	43.679		
DRAINAGE COLLECTED	FROM LAYER 6	3.64854 36.48542 1300009		
PERCOLATION/LEAKAG	E THROUGH LAYE	R 8 0.000093 0.00093 1300009		
AVERAGE HEAD ON TO	P OF LAYER 7	2.879		
MAXIMUM HEAD ON TO	P OF LAYER 7	5.632		
LOCATION OF MAXIMUM HEAD IN LAYER 6 (DISTANCE FROM DRAIN) 4.9 METERS				

DRAINAGE COLLECTED FROM LAYER 12 0.00001 0.00015 3550017 PERCOLATION/LEAKAGE THROUGH LAYER 14 0.000003 0.00003 3550017 AVERAGE HEAD ON TOP OF LAYER 13 0.067 MAXIMUM HEAD ON TOP OF LAYER 13 0.133 LOCATION OF MAXIMUM HEAD IN LAYER 12 (DISTANCE FROM DRAIN) 0.2 METERS PERCOLATION/LEAKAGE THROUGH LAYER 15 0.000000 0.00000 0 SNOW WATER 236.91 2369.1375 730012 MAXIMUM VEG. SOIL WATER (VOL/VOL) 0.4332 MINIMUM VEG. SOIL WATER (VOL/VOL) 0.1040

*** Maximum heads are computed using McEnroe's equations. ***

Reference: Maximum Saturated Depth over Landfill Liner by Bruce M. McEnroe, University of Kansas ASCE Journal of Environmental Engineering Vol. 119, No. 2, March 1993, pp. 262-270.

FINAL WATER STORAGE AT END OF YEAR 20

LAYER	(CM)	) (VOL/VOL)
1	5.3621	0.3575
2	26.2200	0.4370
3	817.6000	0.2920
4	0.0340	0.0679
5	2.2108	0.0737
6	0.1927	0.3211
7	0.0000	0.0000
8	33.9000	0.4520
9	0.0050	0.0100
10	0.9600	0.0320
11	0.0050	0.0100
12	2.2963	0.0621
13	0.0000	0.0000
14	33.9000	0.4520
15	28.3940	0.2839
SNOW V	VATER	0.913



# **Appendix C**

# **Contaminant Flux Modelling**

