Geotechnical Studies West Carleton Environmental Centre

August 2015

Prepared for: Waste Management of Canada Corporation 2301 Carp Road Carp, Ontario K0A 1L0

Assembled by: WSP Canada Inc. 1450 1st Avenue West, Suite 101 Owen Sound, Ontario N4K 6W2

Project No. 131-19416-00

Table of Contents

Appendices

Appendix A.1	Seismic Slope Stability Analysis, prepared by AECOM, dated August 2012 (part	of
	Supporting Document #4, Facility Characteristics Report)	

Appendix A.2 Geotechnical Investigations, Proposed Landfill Expansion, West Carleton Environmental Centre, Carp, Ontario, prepared by Alston Associates Inc., dated July 27, 2015

1. Summary

All geotechnical studies which were completed between 2011 and 2014 for the proposed landfill expansion at the West Carleton Environmental Centre (WCEC) have been assembled herein, in support of the Waste Management of Canada Corporation (WM) Site Plan Control application. The Site Plan Control approval is required by the City of Ottawa before the proposed site development, in addition to the Environmental Compliance Approval (ECA) by Ontario Ministry of the Environment and Climate Change (MOECC). WM applied for an ECA approval in September 2014 and their application is under review.

Details of the proposed landfill expansion are outlined in the Development and Operations Report dated July 2014, by WSP Canada Inc.

Assembled by:

WSP Canada Inc.

Peter S. Brodzikowski, P. Eng. Designated Consulting Engineer Senior Environmental Engineer PSB/dlw

Appendix A.1

Seismic Slope Stability Analysis, prepared by AECOM, dated August 2012 (part of Supporting Document #4, Facility Characteristics Report)

Appendix A. Seismic Slope Stability Analysis

1. Purpose

The purpose of the slope stability analyses presented in this appendix is to assess the potential effect of ground motion due to seismic activity on the slope stability of the landfill and liner system of the proposed new landfill at the West Carlton Environmental Centre (WCEC). The site is located on Lots 3 and 4, Concession 3 in the former Township of Huntley, formerly in the Township of West Carleton, now the City of Ottawa near the intersection of Carp Road and Highway 417.

2. Background

Unlike plate boundary regions where the rate and size of seismic activity is directly correlated with plate interaction, eastern Canada is part of the stable interior of the North American Plate. Seismic activity in areas like these seems to be related to the regional stress fields, with the earthquakes concentrated in regions of crustal weakness. In the Western Quebec Seismic Zone, pattern of historical seismic activity recorded by the Canadian seismograph network since the beginning of the century shows the earthquakes concentrating in two sub-zones: one along the Ottawa River and a second along a more active Montreal-Maniwaki axis. (Natural Resources Canada, 2011a)

The damage potential of an earthquake is determined by how the ground moves. Expected ground motion can be calculated on the basis of probability, and the expected ground motions are referred to as seismic hazard. The seismic hazard at a given site is determined from numerous factors. Canada has been divided into earthquake source regions based on past earthquake activity and tectonic structure. The relationship between earthquake magnitude and the average rate of occurrence for each region is weighed, along with variations in the attenuation of ground motion with distance. In calculating seismic hazard, scientists consider all earthquake source regions within a relevant distance of the proposed site (Natural Resources Canada, 2011b).

Ground motion probability values are given in terms of probable exceedance, that is the likelihood of a given horizontal acceleration or velocity being exceeded during a particular period. The probability used in the 2010 National Building Code of Canada is 0.000404 per annum, equivalent to a 2-per-cent probability of exceedance over 50 years. This means that over a 50-year period there is a 2-per-cent chance of an earthquake causing ground motion greater than the given expected value.

3. Methodology

A conventional method to evaluate the slope stability of municipal solid waste landfill is the pseudo-static factor of safety approach (US EAP, 1995). In this method, a seismic coefficient is specified to represent the effect of the inertial forces imposed by the earthquake upon the potential failure mass and a factor of safety is defined in the conventional manner as the ratio of the ultimate shear strength of the slope elements to the maximum shear stresses induced in those elements by seismic and static loadings.

The computer software SLOPE/W (version 2007), developed by GEO-SLOPE International, was used to perform the slope stability assessment. GEO-SLOPE software is used in more than 100 countries. SLOPE/W, in one form, or another has been used since 1977. SLOPE/W was the very first geotechnical software product available commercially for analyzing slope stability. The initial code was developed by Professor D.G. Fredlund at the University of Saskatchewan. Currently, thousands of professionals both in education and in practice used the software (GEO-SLOPE, 2007).

4. Model Input Parameters

The peak ground acceleration at the site was determined using the 2010 National Building Code Seismic Hazard Calculator of Natural Resources Canada. The National Building Code peak ground acceleration at the site is 0.31 g. To examine the effect of seismic hazard on the slope stability of the landfill the peak ground acceleration was used in the SLOPE/W pseudo-static analysis.

The geometry of the landfill in the slope stability analyses was according to the Figures FCR-3 and FCR-10 in the Facility Characteristics Report. The slope of the landfill at the northeast corner adjacent to the proposed surface water ponds is the highest and was used in the analysis.

The typical configuration of the landfill liner system is shown in Figure FCR-11 in the Facility Characteristics Report. There are many layers and interfaces of adjacent layers. The shear of the weakest interface may govern the stability of the slope. The strength of the layers and interfaces depend on the specific materials selected for each of the components. Published data was used in this preliminary slope stability analysis and the input parameters are presented in the attached Table SS1. In the detailed design of the landfill, the stability assessment will be based on properties and strength of the materials selected for the liner system.

If the composite liner has a smooth geomembrane, the shear strength of its interface is generally lowest and is the critical interface on slope stability. The liner system is modelled in the slope stability analyses as two layers. The top layer represents the primary leachate collection system plus the geotextile and geomembrane directly beneath. The strength of this

layer is assumed to be controlled by the critical interface. The rest of the liner system below is modelled as another layer.

The key input parameters to SLOPE/W are presented in Table SS1. For a liner system with a smooth geomembrane, the critical interface shear strength is assumed to be 8 degrees based on published data. Sensitivity analyses were carried assuming the strength is increased by 50% to 12 degrees which also corresponds to published specific value from a manufacturer. The strength of the waste was based on values established by Sukhmander, Singh, and Murphy using results of laboratory testing, back-calculations from field load test and performance records, and in situ testing (Singh and Murphy, 1990). The effect of variation on the waste strength on the results was examined in sensitivity analyses for the smooth geomembrane cases. Slope stability analyses were performed with and without seismic condition.

Slope stability analyses, with and without seismic condition, were also performed for a liner system with a textured geomembrane instead of a smooth membrane. Textured geomembrane generally has a significantly higher interface shear strength than smooth geomembrane. The critical interface friction angle that gave a slope stability factor of safety greater than 1.0 under seismic condition was determined by back-calculations. In the above cases, the critical slip surface was determined by SLOPE/W as a composite slip surface. Additional cases were analyzed for the critical slip surface being circular as in conventional rotational analyses.

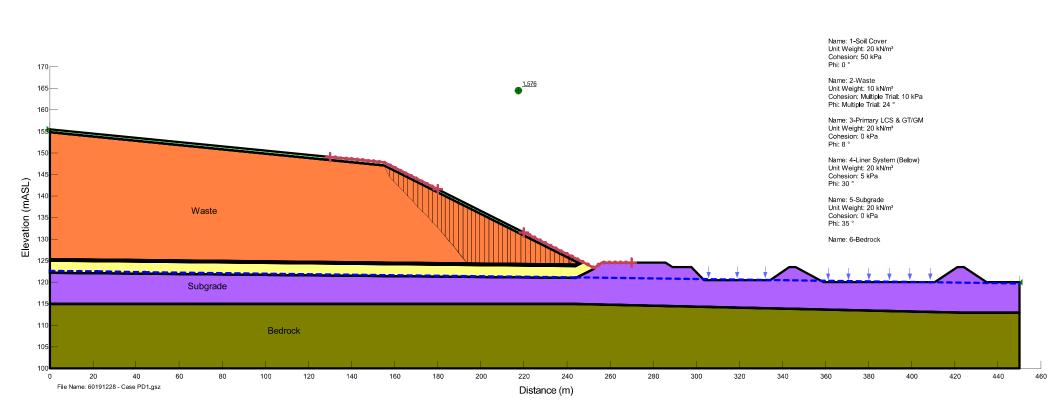
5. Results of Slope Stability Analyses

The results of SLOPE/W are summarised in the attached Table SS2, figures showing the critical slip surface and the corresponding calculated factor of safety for each case, and the plots of results of the sensitivity analyses.

The results showed that the factor of safety on slope stability is lower when the effect of seismic hazard is considered (see attached Table SS2). The seismic condition is based on the peak ground acceleration at the site according to the 2010 National Building Code. For a smooth geomembrane the calculated factors of safety under seismic condition were generally less than half of the corresponding results without seismic loading (Cases PD2A and PD2B versus Case PD1). Similar differences were found for the cases with a textured geomembrane as shown in Table SS2 (Case PD4B versus Case PD3, and Case PS2Bversus Case PS1).

With a smooth geomembrane, the calculated factors of safety under seismic condition were all well below 1.0 for the ranges of input parameters considered. These pseudo-static analyses results suggested that the calculated factor of safety on slope stability under the seismic condition for a liner system with a smooth geomembrane at the critical slip surface is inadequate. The results are summarized in Cases PD2A and PD2B in Table SS2 and in the plots of the sensitivity analyses results.

For the scenarios considered, Cases PD4A, PD4B, PS2A and PS2B, the back-calculations suggested that under seismic condition, the critical interface shear strength has to be approximately 25 degrees or greater for a calculated factor of safety above 1.0.


6. Discussion and Conclusions

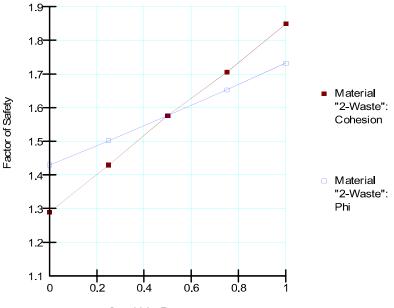
Published generalized friction angle of texture HDPE geomembrane with non-woven, needlepunched or heat-bonded, geotextile showed values between 28 to 32 degrees (Koerner, 2005). The data by Koerner also suggested that the interface fraction between a texture HDPE geomembrane and soil could also be over 25 degrees. Furthermore, the use of peak ground acceleration with a pseudo-static factor of safety of 1.0 has been shown to give conservative assessments of slope performance in earthquakes (US EPA, 1995). With the selection of appropriate liner materials, the seismic slope stability analyses results suggested that the slope stability of the landfill and liner system can have adequate factor of safety under seismic condition with peak ground acceleration up to 0.31 g. This value of 0.31 g corresponds to the peak ground acceleration at the site for an earthquake with probability of exceedance of 2-percent over 50 years according to the 2010 National Building Code.

Detailed assessment of stability of the landfill and liner system shall be carried out using updated input parameters in the detailed design of the landfill to confirm that appropriate materials are selected and ensure that adequate factor of safety is achieved.

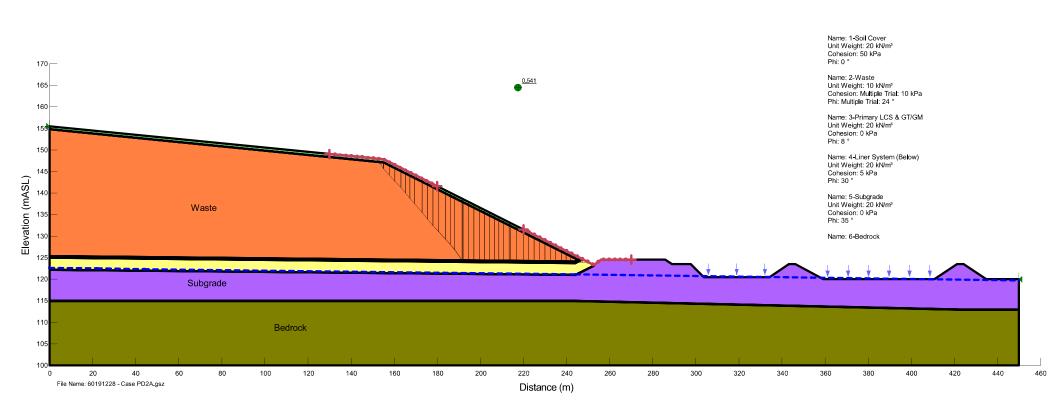
7. References

GEO-SLOPE International Ltd., 2007: Stability Modelling with SLOPE/W 200, An Engineering Methodology, 2nd Edition, May 2007. Koerner, R.M, 2005: Designing with Geosynthetics, 5th Edition, Pearson Prentice Hall. Natural Resources Canada, 2011a: Earthquake Zones in Eastern Canada, Date Modified 2011-11-07 http://earthquakescanada.nrcan.gc.ca/zones/eastcan-eng.php#WQSZ Natural Resources Canada, 2011b: Seismic hazard Calculations. Date Modified 2011-11-07 http://earthquakescanada.nrcan.gc.ca/hazard-alea/zoning-zonage/haz-eng.php Singh, S. and Murphy. B.J., 1990: Evaluation of the Stability of Sanitary Landfills in "Geotechnical of Waste Fills - Theory and Practice", ASTM STP 1070, ASTM. United Stated Environmental Protection Agency (US EAP), 1995: RCRA Subtitle D (258) Seismic Design Guidance for Municipal Solid Waste Landfill Facilities. EPA/600/R-95/051 April 1995.

Name: Case PD1


Project Name: West Carleton Environmental Centre Project No.: 60242342 Task: Preliminary Seismic Slope Stability Analysis Date: Jan-2012

Sensitivity Analysis

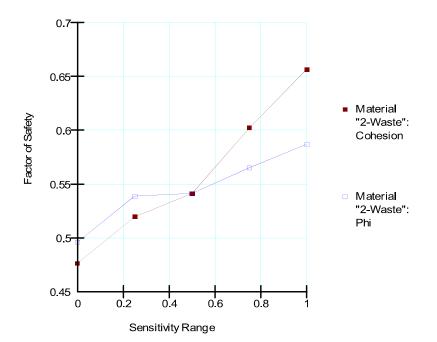

Case PD1

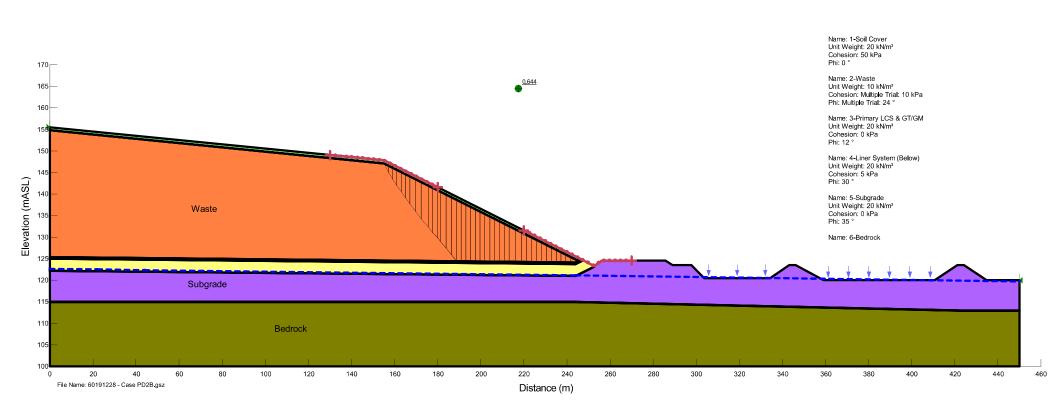
(Critical Interface Friction Angle φ: 8 Degree)

Input Data					
Sensitivity Range	Corresponding "2- Waste" Cohension Value (kPa)	Corresponding "2-Waste" Phi Value (Degree)			
0	0	20			
0.25	5	22			
0.5	10	24			
0.75	15	26			
1	20	28			

Sensitivity Range

Name: Case PD2A


Project Name: West Carleton Environmental Centre Project No.: 60242342 Task: Preliminary Seismic Slope Stability Analysis Date: Jan-2012

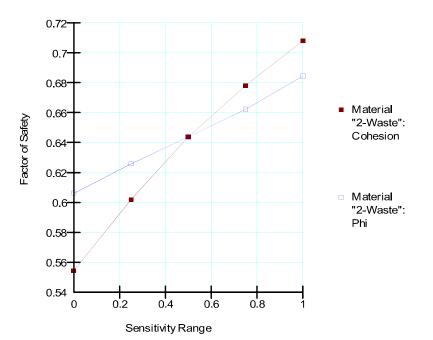

Sensitivity Analysis

Case PD2A

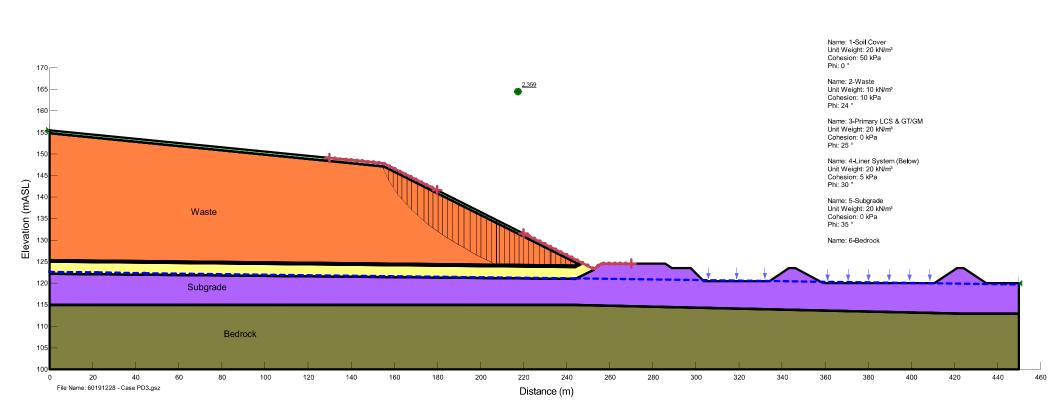
(Critical Interface Friction Angle ϕ : 8 Degree)

Input Data					
Sensitivity Range	Corresponding "2- Waste" Cohension Value (kPa)	Corresponding "2-Waste" Phi Value (Degree)			
0	0	20			
0.25	5	22			
0.5	10	24			
0.75	15	26			
1	20	28			

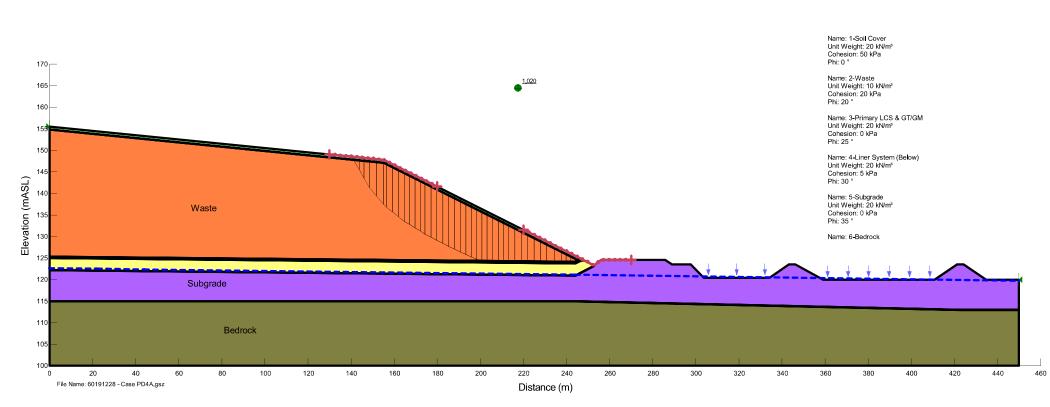
Name: Case PD2B

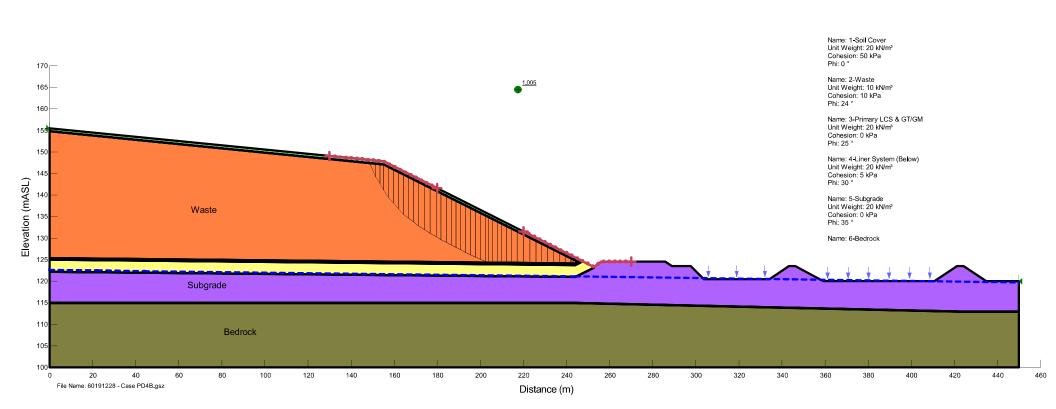

Project Name: West Carleton Environmental Centre Project No.: 60242342 Task: Preliminary Seismic Slope Stability Analysis Date: Jan-2012

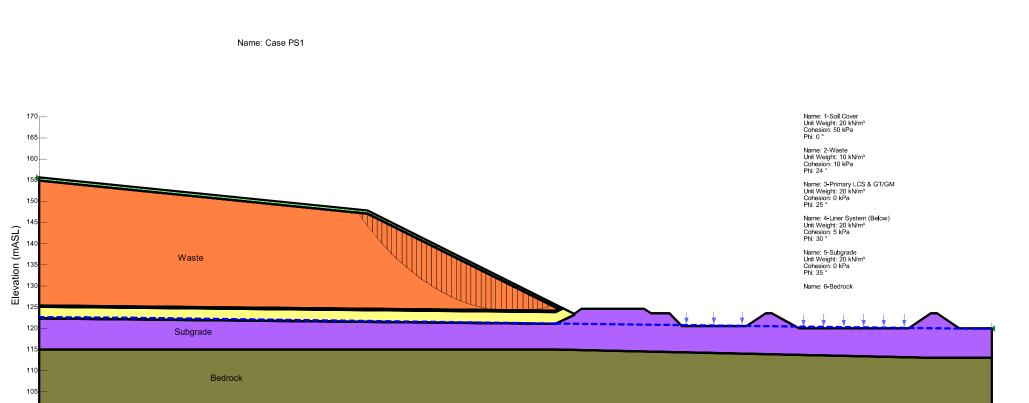
Sensitivity Analysis

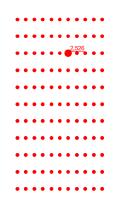

Case PD2B

(Critical Interface Friction Angle φ: 12 Degree)


Input Data					
Sensitivity Range	Corresponding "2-Waste" Phi Value (Degree)				
0	0	20			
0.25	5	22			
0.5	10	24			
0.75	15	26			
1	20	28			


P:\60242342\400-Technical Information & Discipline Work In Progress\410-T09-Site D&O WIP\Slope Stability Analysis\Preliminary Analysis\Output Files\WIP\60242342-Case PD and PS series.xlsxPD2B-Sensitivity Analysis1/31/2012

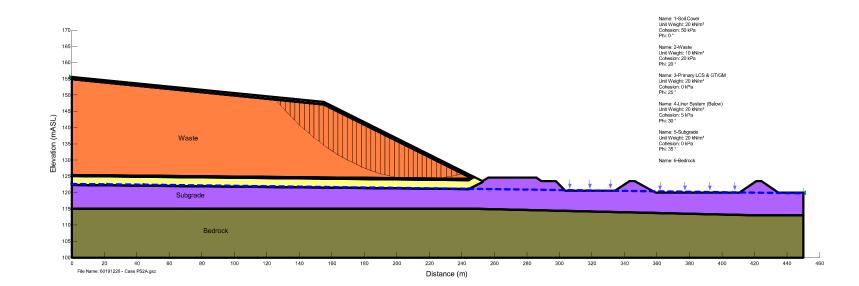

Name: Case PD3

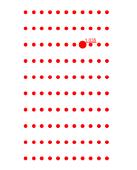


Name: Case PD4A

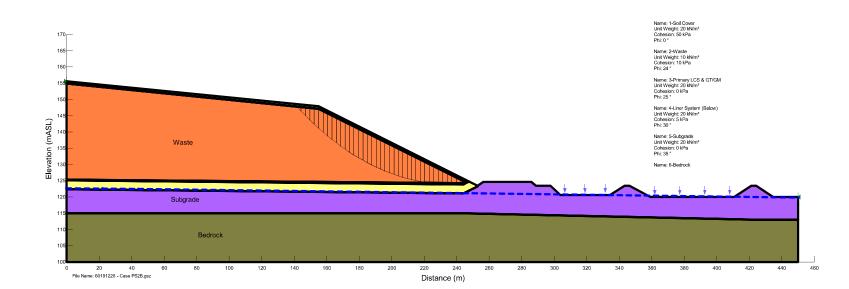
Name: Case PD4B

200 220


File Name: 60191228 - Case PS1.gsz


Distance (m)

.....


Name: Case PS2A

.....

Name: Case PS2B

Table SS1. Key Input Parameters

Project Name:West Carleton Environmental CentreProject Number:60242342Task:Preliminary Seismic Slope Stability AnalysesDate:January 2012

	Preliminary		
Parameters	Values Assumed	Unit	Notes
Subgrade			Source - Alston Associates Inc Report Aug 2, 2011 "Preliminary Geotechnical Evaluation, Proposed New Landfill Mound, Waste Management, Carp, Ontatio (Revised)".
			The effective friction angle measured by direct shear test on a sample of the silty sand soil of 39° is higher than would be predicted on the basis of penetration index values measured by in situ testing (CPT and DCPT)
Friction Angle	35	degree	according to the report.
Cohesion		kPa	
Density	16.5	kN/m ³	Density based on the initial water contents and dry densities before the direct shear test on the sample of silty sand soil.
Liner System			The G2 liner system from the primary compacted clay liner down is modelled as a single unit.
Friction Angle		degree	
Cohesion		kPa	
Density	20	kN/m ³	
Primary Leachate Collection System, Geotextile and Geomembrane			All the Interfaces from the bottom of the waste to top of the primary clay liner is modelled as a single unit. The shear strength of the weakest interface shall govern the shear strength of this unit. The interface shear strength will depend on the actual construction materials used.
Friction Angle (smooth HDPE)	8	degree	Geotextile/Geomembrane interface assumed critical. Generalized interface shear strength based on Robert Koerner "Design with Geosynthetics" 5th Edition, for a smooth High Density Polyethylene (HDPE) geomembrane and a non-woven needle-punched geotextile.
Friction Angle (textured HDPE)		degree	Critical interface depends on the actual construction materials used, and may be at a geotextile interface or a geomembrane interface. For the preliminary analysis, the assumed critical shear strength assumed is not less than those showed in Robert Koerner's book "Design with Geosynthetics" 5th Edition. The soil, geotextile and textured geomembrane shall be selected in the detailed design to ensure adequate factor of safety.
Cohesion		kPa	
Density	20	kN/m ³	
Waste			Assumed preliminary strength parameters based on Singh S and Murphy B, "Evaluation of the Stability of Sanitary Landfills" in "Geotechnical of Waste Fills – Theory and Practice"ASTM STP 1070, 1990.
Friction Angle	24, (20 to 28 sensitivity analysis)		
Cohesion	10, (0 to 20 sensitivity analysis)	kPa	
Density	10	kN/m ³	
Final Cover			Strength based on generalized unconfined compression strength based on Karl Terzaghi and Ralph Peck "Soil Mechanics in Engineering Practice" 2nd Edition, for a clay with medium consistency .
Friction Angle		degree	
Cohesion		kPa	
Density	20	kN/m ³	

Notes

3. Dry condition was assumed for all cases.

^{1.} All these preliminary input parameters to be updated in the detailed design.

^{2.} The parameters and values will depend on the actual type of construction materials selected.

Table SS2: Summary of Slope Stability Results

Project Name: West Carleton Environmental Centre Project No.: 60191228 Task: Preliminary Seismic Slope Stability Analysis Date: Jan-2012

Summary of the Factor of Safety

	Results	Inputs				
Case ID	Factor of Safety	Waste Strength		Critical Interface Friction Angle ø	Seismic	Critical Slip
		Cohesion C (kPa)	Friction Angle ø (degree)	(degree)	Jeisinic	Surface Type
PD1	1.576	10	24	8	No	Composite
PD2A	0.541	10	24	8	0.31g (horz)	Composite
PD2B	0.644	10	24	12	0.31g (horz)	Composite
PD3	2.359	10	24	25	No	Composite
PD4A	1.020	20	20	25	0.31g (horz)	Composite
PD4B	1.005	10	24	25	0.31g (horz)	Composite
PS1	2.526	10	24	25	No	Circular
PS2A	1.105	20	20	25	0.31g (horz)	Circular
PS2B	1.035	10	24	25	0.31g (horz)	Circular

Notes:

1. Input parameters see Table SS1.

2. Critical Interface Friction Angles for Cases PD1, PD2A, and PD2B were assumed for a smooth geomembrane. A textured geomemi

3. Critical slip surfaces and calculation of Factor of Safety shown as attached.

4. Sensitivity analysis conducted for Cases PD1, PD2A, and PD2B, the plots of the results are shown as attached.

Appendix A.2

Geotechnical Investigations, Proposed Landfill Expansion, West Carleton Environmental Centre, Carp, Ontario, prepared by Alston Associates Inc., dated July 27, 2015

GEOTECHNICAL INVESTIGATIONS PROPOSED LANDFILL EXPANSION WEST CARLETON ENVIRONMENTAL CENTRE CARP, ONTARIO

REPORT REF. NO. 15-022 July 27, 2015

Prepared For:

WSP Canada Inc. 1450 1st Avenue, Suite 101 Owen Sound, ON N4K 6W2

Prepared By: Alston Associates Inc.

Toronto

Distribution:

Electronic - WSP Canada Inc.

сору

1 copy - Alston Associates Inc.

Contents

1	Introduction	.2
2	Preliminary Geotechnical Evaluation, Proposed New Landfill Mound, Waste Management, Carp, Ontario, (Revised), ref. No. 11-066, dated August 2, 2011 2.1 CONCLUSION	
3	Geotechnical Investigation, Waste Management, Carp Road, Carp, Ontario ref. No. 13-107, dated December 3, 2013 3.1 Conclusions and Recommendations	
4	Addendum to report, Geotechnical Investigation, Waste Management, Carp Road, Carp, Ontario ref. No. 13-107a, dated December 16, 2013	.5
5	Supplemental Geotechnical Investigation, Proposed Landfill Expansion, West Carleton Environmental Centre, Carp, Ontario, ref. No. 13-182, dated March 12, 20145.1Roadway Pavement Recommendations5.2Infiltration Basin Recommendations5.3Proposed Stormwater Management Pond Recommendations	8 11 12 13

APPENDICES

APPENDIX 1	PRELIMINARY GEOTECHNICAL EVALUATION, PROPOSED NEW LANDFILL MOUND, WASTE MANAGEMENT, CARP, ONTARIO, (REVISED), REF. NO. 11-066, DATED AUGUST 2, 2011
APPENDIX 2	GEOTECHNICAL INVESTIGATION, WASTE MANAGEMENT, CARP ROAD, CARP, ONTARIO REF. NO. 13-107, DATED DECEMBER 3, 2013
APPENDIX 3	ADDENDUM TO REPORT, GEOTECHNICAL INVESTIGATION, WASTE MANAGEMENT, CARP ROAD, CARP, ONTARIO REF. NO. 13-107A, DATED DECEMBER 16, 2013
APPENDIX 4	SUPPLEMENTAL GEOTECHNICAL INVESTIGATION, PROPOSED LANDFILL EXPANSION, WEST CARLETON ENVIRONMENTAL CENTRE, CARP, ONTARIO, REF. NO. 13-182, DATED MARCH 12, 2014
APPENDIX 5	DRWG. 131-19416-00 – SK10

1.0 Introduction

Alston Associates Inc. (AAI) was retained by Waste Management (WM) to carry out geotechnical investigation studies for the proposed landfill expansion located at West Carleton Environmental Centre (WCEC) in Carp, Ontario. Four geotechnical reports were prepared during the period between 2011 and 2014 by **AAI**. Copies of the four reports which comprise Appendices 1 through 4 of this report were submitted by WSP to the City of Ottawa in support of Waste Management of Canada Corporation Site Control Plan Application.

We understand that upon preliminary review of the geotechnical reports, the City of Ottawa, commented that the provided reports addressed separate issues as well as some of the same issues and requested that the reports be consolidated into one report that combines the sections that cover the same general information and provide one set of conclusions and recommendations.

The following report consolidates the four reports.

2.0 Preliminary Geotechnical Evaluation, Proposed New Landfill Mound, Waste Management, Carp, Ontario, (Revised), ref. No. 11-066, dated August 2, 2011

A preliminary geotechnical evaluation of the study site was carried out by **AAI** in 2011. This work involved excavating five test pits within the footprint of the proposed landfill mound, and excavating a sixth test pit at a location north of the proposed mound to provide information on the near surface soil deposits in that area of the site; the purpose of the sixth test pit was to make a preliminary evaluation of that area of the site as a source of borrow material.

The test pits which were excavated to depths ranging from 2.3 to 5.2 m below the existing ground surface, revealed that soil deposits within the proposed landfill mound generally consisted of an upper layer of gravelly sand; 0.5 to 1.2 m in thickness followed by silty sand with a trace of gravel, which included traces of boulders. The compactness condition of both granular soil deposits was determined to be compact becoming dense with depth. Groundwater was contacted at depths ranging from 1.5 to 2 m below grade.

The results of a set of direct shear tests performed on a sample of the silty sand provided an effective friction angle of the soil of 39°.

2.1 CONCLUSION

The report concluded that the in situ soil will provide competent support for construction of the landfill mound and that construction of the mound was unlikely to result in slope instability in the side of the mound as a result of failure surface undercutting the supporting native soil deposits. The probable settlement of the base of the mound was expected to be modest as a result of the dense condition of much of the sand deposits.

It should be noted that this study was preliminary in nature and did not include any analyses.

A copy of this report comprises Appendix 1 of this document.

3.0 Geotechnical Investigation, Waste Management, Carp Road, Carp, Ontario ref. No. 13-107, dated December 3, 2013

Based on the findings of the preliminary evaluation, **AAI** was retained by Waste Management in 2013 to carry out a detailed geotechnical analysis of the proposed expansion.

A detailed description of the hydrogeology of the site had been developed by WESA; presented in their report for the proposed site development regarding the Geology and Hydrogeology, existing conditions. A copy of the plan which shows the positions of the WESA boreholes and records of the borehole data which are relevant to the geotechnical design were provided to **AAI** for use for this study.

The fieldwork for this geotechnical study involved advancing a total of twelve sampled boreholes at the site. Those data were complemented by the results of two soundings advanced using a Marchetti Flat Plate Dilatometer (DMT) and one sounding by the Dynamic Cone Penetration test (DCPT) method. Further information relating to procedures followed during the fieldwork may be found in Section 3.0 of the report attached in Appendix 2.

Eight boreholes; Boreholes numbered 1, 2, 3, 6, 7, 9, 10 and 11 were located within the footprint of the proposed landfill site. The remaining four boreholes; Boreholes Numbered 4, 5, 8 and 12, which were instrumented with 50 mm diameter monitoring wells were located within the area of proposed infiltration basins. The locations of these boreholes were chosen by WESA.

Description of the site and subsurface soil and groundwater conditions, along with the results of the laboratory testing is provided in Section 4, sub-sections 4.1 through 4.8 of the report (Appendix 2).

The preliminary target density for the emplaced landfill material given in the development prospectus is 7.8 kN/m³. That density has been adopted for geotechnical analysis of facility design.

3.1 Conclusions and Recommendations

Measurements of the stabilized groundwater table elevation at the site show that mostly, the water table lies at shallow depth. For ease of site preparation it is proposed that the base of the landfill will be positioned above the groundwater table. Site preparation for the proposed 30 m high above landfill mound would require the following operations:

- Remove topsoil and fill materials beneath landfill footprint;
- Compact the exposed subgrade to a dry density of not less than 98% of the material's standard Proctor maximum dry density (SPMDD);
- Lay fill materials as required by landfill design in lifts appropriate to the compaction equipment, and thoroughly and uniformly compact the fill materials to 98% SPMDD.

Analyses have been carried out to assess the stability of the side slopes of the completed landfill facility following final profiling of the slopes immediately prior to closure. Those analyses show a factor of safety under a static loading condition with respect to global stability of more than the required design value of 1.5, which is satisfactory. A copy of the stability analysis for the final side slope is attached in Appendix 'E' of the report attached in Appendix 2. The soil parameters adopted for design evaluation is based on interpreted in situ and laboratory test data, and is given in the analysis sheets.

It is proposed to complete the construction of the liner, including the 2.5 m high slope at a 25% (IV:4H) gradient, at the liner perimeter. This slope must be stable in the period prior to placement of landfill as well as in service life. The relevant selected geotechnical parameters are given below:

- Compacted clay landfill liner and attenuation layer unit weight 19.5 kN/m³, cohesion intercept nil, effective angle of internal friction 28;
- Interface friction angle between non-woven geotextile and compacted day line 28;
- Interface friction angle between non-woven geotextile and granular drainage layer, 36;
- Interface friction angle between non-woven geotextile and textured geomembrane 36;
- Interface friction angle between textured geomembrane and compacted clay landfill liner 28.

The listed parameters show that the critical layers for slope instability are the compacted clay liners; the clay material governs the interface properties. Thus, presuming that the critical failure mode will be sliding, the factor of safety with respect to slope instability is more than 2 for the static condition, which is satisfactory.

An analysis of the expected settlement which will occur in the soils which underlie the landfill has been carried out using values of deformation (constrained) modulus measured by DMT. The results of analysis show that the maximum expected settlement in the native soils is less than 20 mm. Copies of settlement analyses in both east-west and north-south directions and which show estimated settlement along the length of the selected sections are attached in Appendix 'F' of the document attached in Appendix 2. On the basis that the soil profile consists of predominantly granular type soils, the rate of settlement is expected to be relatively rapid following load application.

Numerous building developments are anticipated at the site. However, those building locations have not been finalized. Based on the results of the boreholes advanced at the site, it is anticipated that conventional footing foundations applying a bearing pressure at Serviceability Limit States of 120 kPa at a depth below the ground surface of not less than 1.5 m (for heated buildings) may be adopted for preliminary design. It is anticipated that the site classification with respect to seismic site response will be Class 'D' with regard to building developments. Specific recommendations will be prepared when the site layout has been finalized.

A copy of this report comprises Appendix 2 of this document.

4.0 Addendum to report, Geotechnical Investigation, Waste Management, Carp Road, Carp, Ontario ref. No. 13-107a, dated December 16, 2013

Analyses carried out in the December 3, 2013 report summarized in Section 3 above with regards to the stability of the side slopes of the completed landfill and the settlement characteristics of the supporting soil profile were made on the basis of conventional (conservative) parameters for shear strength and unit weight of the landfill materials, and were intended to support the conceptual design of the landfill.

We understand that it is the intention of Waste Management that the municipal waste materials be compacted to a dense condition, similar to that achieved on other current landfill sites in Ontario, which are operated by Waste Management.

This report addendum updates the geotechnical design of the landfill. This study presents the results of detailed analysis of side slope stability for both static and seismic loading as well as anticipated settlement which will occur under the completed landfill site.

Selection of soil parameters for assessment of stability presented in this report is based on the results of the testing work carried out to determine the shear strength of samples of densely compacted municipal waste material on samples excavated from the Richmond Landfill site in Napanee, Ontario.

Denser compaction of the waste material has resulted in a higher unit weight of the fill, and improved shear strength characteristics. Work carried out to determine the geotechnical parameters of landfilled municipal waste excavated from the Waste Management Richmond Landfill site shows the following representative soil parameters.

Age of Municipal Solid Waste	Cohesion Intercept C' (kPa)	Effective Angle of Internal ø'	
6 months old	27	26°	
1 year old	32	28ຶ	
16 years old	9	37°	

Records for the Richmond Landfill indicate that the representative unit weight of the compacted waste, including daily cover, is 14 kN/m³.

Reference to the foregoing test results shows that in general, the shear strength characteristics of the landfilled municipal waste increase with time. This is attributed to a denser state of packing of the materials and increased interlock between rigid particles included in the waste fill.

Comparison was made of the recorded results with data reported by other researchers the test data for the Richmond site have been shown to be reasonably consistent with test results reported by others.

It is proposed that the landfill liner will consist of a double composite liner as required by the Ontario Ministry of the Environment. This consists of the following components:

- Landfill leachate collection system embedded in 0.3 m thick layer of granular material;
- Needle punched nonwoven geotextile;
- 1.5 mm thick HDPE liner;
- 0.75 m thick engineered clay liner;
- Needle punched nonwoven geotextile;
- 0.3 m thick granular secondary leachate collection layer;
- Needle punched nonwoven geotextile;
- 2 mm thick HDPE liner;
- 0.75 m thick engineered clayey secondary liner;
- 1 m thick attenuation layer consisting or natural of constructed low permeability soil.

In order to enhance the adhesion between the HDPE liner and both the overlying nonwoven geotextile, as well as the underlying engineered clayey liner, it is proposed that the HDPE be a textured material. Reference to published literature shows that the friction angle between non-woven geotextile and textured HDPE ranges from 32 to 38°. The friction angle between textured HDPE and compacted clay has been found to be more than 40°. The friction angle of the granular material in the drainage layer is expected to exceed 35° for hard, durable stone.

On the basis of the given data, the controlling shear strength parameters of the composite double liner system are governed by the properties of the compacted clay layer.

On the basis of these data a conservative effective friction angle of 28 has been selected for static stability analysis; an undrained shear strength of the compacted clay layer of 120 kPa is of the liner is assumed. This value will be part of the specification for liner construction.

An analysis has been carried out with regards to the stability of the side slopes of the completed landfill using the soil parameters given above. Those results show a factor of safety with respect to global shear failure of more than 2 for both 1 year old and 16 year old municipal waste. The analysis results are attached in Appendices 'AA' and 'BB', respectively of the document attached in Appendix 3 of this report. This exceeds the Ministry of the Environment requirement value of 1.5 and is satisfactory.

A seismic load of 0.42 g has been adopted for analysis of slope stability under seismic loads. The results of the stability analysis for the 1 year old and 16 year old waste are given in Appendices 'CC' and 'DD', respectively of the document attached in Appendix 3 of this report. The results of analysis show a factor of safety of more than 1.1 which is satisfactory.

The settlement of the base of the liner under the full loads of the landfilled municipal waste have been calculated on the basis of deformation modulus values measured in the course of undertaking DMT soundings. The results of the analyses showing estimated settlement in both north-south and east-west directions are attached in Appendices 'EE' and 'FF' of the document attached in Appendix 3 of this report. These analyses show that the maximum deformation of the landfill base under full load (30 m landfill height) is expected to be in the range 25 to 30 mm. The calculated settlement profile beneath the landfill is given in Page 5 of each reported analysis.

A copy of this report comprises Appendix 3 of this document.

5.0 Supplemental Geotechnical Investigation, Proposed Landfill Expansion, West Carleton Environmental Centre, Carp, Ontario, ref. No. 13-182, dated March 12, 2014

AAI was subsequently retained by Waste Management to carry out a supplemental geotechnical investigation. The purpose of this investigation was to characterize the subsurface soil and groundwater conditions, to determine the relevant geotechnical properties of encountered soils, and to provide geotechnical recommendations for:

 Structural design of proposed paved and granular-surfaced roads, including recommendations for placement of subgrade and components of the various pavement structures which included a paved access road extending from the southwest corner of the proposed landfill site to the proposed Carp Road widening, a granular-surfaced maintenance/service road surrounding the perimeter of the proposed landfill, and repaving the existing gravel road at the southwest corner of the proposed landfill site.

- Geotechnical support and guidance in design of infiltration basins, including recommendations relating to percolation rate of the in-situ soils and design of above grade containment berms;
- Recommendations relating to the design and construction of two proposed lined SWM ponds;
- Design recommendations required for paving the existing gravel road to the transfer station at the southwest corner of the Waste Management (WM) property; and
- Recommendations regarding installation of various utilities, including suitability of native soils and requirements for imported soils as bedding and backfill material.

The fieldwork for this investigation was carried out during the period between December 16 and 20, 2013, and consisted of twenty (20) exploratory boreholes, numbered 201 to 220 inclusive.

Description of the subsurface soil and groundwater conditions, along the existing gravel road, the proposed infiltration basins and the two proposed stormwater management ponds is provided in Section 5, sub-sections 5.1 through 5.5 of the report attached in Appendix 4 of this report.

5.1 Roadway Pavement Recommendations

It is understood that new roads are proposed for construction to provide access for the new landfill expansion. The proposed roads will include:

- a new paved access road extending from the southwest corner of the proposed landfill site to the proposed Carp Road widening
- new granular-surfaced maintenance/service road (ring road) surrounding the perimeter of the proposed landfill
- pave the existing gravel road at the southwest corner of the proposed landfill site

According to Section 7.3 of Supporting Document 4, Facility Characteristics Report prepared by AECOM, truck traffic associated with the landfill operation will include hauling waste to the site as well as haulage of construction materials.

Based on Drawing No. 131-19416-00 – SK10 prepared by WM / WSP Canada Inc., the indications are that with the exception of the existing gravel road extending north from the existing waste transfer building, the grades along all remaining proposed roads will be raised by as much as 8 m.

The following recommendations regarding placement of fill under proposed roads should be adhered to during the construction stage:

- All exposed topsoil and organic soils must be removed, and the underlying subgrade soils compacted prior to any new fill placement.
- Fill operations should be monitored and compaction tests should be performed to ensure that the materials are being adequately compacted.

- Material used as fill should be free of organics and/or other unsuitable material, and must be placed in lifts suitable for the material and size of compactor being used, and compacted to at least 96% SPMDD.
- If fill is required adjacent to sloped banks (> 3:1, horizontal to vertical), it is imperative that the fill is placed in stepped planes in order to avoid a plane weakness.
- The fill operation should take place in favorable climatic conditions. If the work is carried out in months where freezing temperatures may occur, all frost affected material must be removed prior to the placement of frost-free fill.

In general, the soil strata at the site consist of compact sandy silt underlain by very dense sandy silt soil which rests on bedrock. Deformation of these soils under application of up to 8 m of fill (approximately 160 kPa) will be minimal and likely be completed within a few weeks upon completion of placement of fill.

Based on information provided by WSP Canada Inc., we understand that the roadways throughout the site should be designed for a service life of 25 years and the following anticipated traffic:

Section of the main road from the landfill entrance to the turnaround near SW corner of the expansion area:

- Average annual daily traffic (AADT) 700
- 55% packer and roll-off trucks (3-4 axles)
- 26% tractor trailers (7-9 axles)
- 19% small passenger cars and pickups

Section of road from the turnaround to Waste Transfer Processing Facility

- AADT 138
- 80% roll off trucks (3-4 axles)
- 20% tractor trailers (7-9 axles)

Ring road surrounding waste disposal area

The ring road surrounding the proposed waste disposal area will be used by internal site traffic which may include rock trucks.

We also understand that as loaded tractor trailers may keep down liftable axles and apply additional stress on pavement on all 90 degree turns.

Based on a design life of 25 years, the anticipated usage provided above, and a CBR of 4 for the compacted fill subgrade, the following pavement designs are recommended for the gravel and paved roads.

Section of the main road from the landfill entrance to the turnaround near SW corner of the expansion area:

• Asphaltic concrete surface course – 50 mm HL3 High Stability or Superpave 12.5 Level D with PG 64-28 asphalt cement

- Asphaltic concrete base course 100mm (2 layers) HL8 Heavy Duty Binder Course or Superpave 19 Level D with PG 64-28 asphalt cement
- Granular base course 150 mm of Granular 'A'
- Granular sub-base course 550 mm of Granular 'B' Type II

As an alternate to the asphaltic concrete pavement recommended above, in areas where trucks are to repeatedly stop and go, such as at gates, as well as make sharp turns, a Portland cement concrete pavement may be considered. The concrete pavement should consist of:

- Concrete 250 mm
- Granular base course 150 mm of Granular 'A'
- Granular sub-base course 300 mm of Granular 'B' Type II

The concrete must be air entrained, and possess minimum compressive and flexural strengths of 35 MPa and 4.8 MPa respectively.

Section of road from the turnaround to Waste Transfer Processing Facility

- Asphaltic concrete surface course 40 mm HL3 High Stability or Superpave 12.5 Level D with PG 64-28 asphalt cement
- Asphaltic concrete base course 80mm (2 layers) HL8 Heavy Duty Binder Course or Superpave 19 Level D with PG 64-28 asphalt cement
- Granular base course 150 mm of Granular 'A'
- Granular sub-base course 400 mm of Granular 'B' Type II

The in situ granular soil along the existing gravel road north of the transfer station may be left in place, and overlain with a minimum of 150 mm thick Granular 'A' base prior to placement of the asphaltic concrete layers recommended above.

Ring road surrounding waste disposal area

- Granular surface course 300 mm of Granular 'A'
- Granular base course 450 mm of Granular 'B' Type II

It should be noted that all proposed roadways will be suitable for use by fire trucks.

The subgrade must be compacted to at least 98% SPMDD for at least the upper 600 mm and 96% below this level. Where fine-grained clay soils are used for subgrade upfill, the degree of compaction specification alone cannot ensure distress free subgrade. Proof-rolling of the roadway subgrade must be carried out and witnessed by **AAI** personnel for final recommendations of sub-base.

The granular pavement structure materials should be placed in lifts not exceeding 150 mm thick and be compacted to a minimum of 100% SPMDD. Asphaltic concrete materials should be rolled and compacted as per OPSS 310. The granular and asphaltic concrete pavement materials and their placement should conform to OPSS 310, 501, 1010 and 1150.

The long-term performance of the proposed pavement structures is highly dependent upon the subgrade support conditions. Stringent construction control procedures should be maintained to ensure that uniform subgrade moisture and density conditions are achieved. In addition, the need for adequate drainage cannot be over-emphasized. The finished pavement surface and underlying subgrade should be free of depressions and should be crowned and sloped (at a minimum crossfall of 2% for both the pavement surface and the subgrade) to provide effective drainage. Surface water should not be allowed to pond adjacent to the outside edges of pavement areas. Sub-drains or roadside drainage ditches must be provided to facilitate effective and assured drainage of the pavement structures as required to intercept excess subsurface moisture and minimize subgrade softening. The invert of sub-drains and drainage ditches should be maintained at least 0.3 m below subgrade level.

In the event that the near surface subgrade soil cannot be maintained dry by providing good ditches and sub drains, then the fill within the uppermost 900 mm should consist of Select Subgrade Material (sandy soil).

5.2 Infiltration Basin Recommendations

Details of the proposed Infiltration Basins No. 1 and No. 2 are provided in Drawing No. 131-19416-00 – SK10 prepared by WM / WSP Canada Inc. dated November 21, 2013.

According to this drawing, the proposed base elevation of Infiltration Basin No. 1 is 123.00 m, and of Infiltration Basin No. 2 is 122.00 m. The proposed grades at the top of the basins (containment berms) would range between 126.7 and 128 m at Infiltration Basin 1 and between 124.5 and 126.3 m at Infiltration Basin No. 2. The side slopes of both infiltration basin embankments would be 3H to 1V.

The existing site grades within the bases of the proposed infiltration basins range between 122 and 122.5 m, and between 117.5 to 124.5 m, at Basins 1 and 2 respectively. On this basis, the existing site grades will be raised to achieve the design base elevations of both infiltration basins.

Our recommendations regarding the construction of the proposed infiltration basins are:

- The existing topsoil, organic soil and any fill materials present within the footprints of the infiltration basins must be removed down to the native soil stratum.
- Soil possessing the design infiltration rate should be placed loosely within the base of both basins to the proposed grades of 122 m and 123 m.
- Fill placed within the containment berms of the basins should consist of clayey soils and compacted to a minimum 98% SPMDD.
- The uppermost at least 600 mm depth of the clayey soil placed within the berms should have the following properties:
 - Plasticity Index between 7 and 65.
 - 100 percent of the particles passing 75 mm sieve.

- Not less than 70 percent of the particles, by weight, passing the 0.075 mm sieve.
- Not less than 20 percent of the particles, by weight, passing the 0.002 mm sieve.
- Placed in maximum 300 mm lifts and compacted to a minimum of 98% SPMDD.
- Placed at or slightly above optimum moisture content.

The permeability of the 5 soil samples retained from the footprint of Infiltration Basin 1 are estimated to be in the range of 5x10⁻² to 2.3x10⁻⁴ cm/sec, corresponding to approximate percolation times of 3 to 10 min/cm respectively.

The permeability of the 4 soil samples retained from the footprint of Infiltration Basin 2 (Boreholes 202, 203, 204 and 4) are estimated to be in the range of $4x10^{-2}$ to $1.6x10^{-5}$ cm/sec, corresponding to approximate percolation times of 3 to 20 min/cm respectively. The silty clay present in Borehole 205, situated in the southeast quadrant of the footprint of Infiltration Basin 2 is considered to be impervious, with an estimated permeability of less than 10^{-7} cm/sec and corresponding percolation time in excess of 50 min/cm.

5.3 Proposed Stormwater Management Pond Recommendations

Details of the proposed SWM ponds which are provided in Drawing No. 131-19416-00 – SK10 prepared by WM / WSP Canada Inc. dated November 21, 2013 are summarized as follows:

	Proposed Base Elevation (m)	Existing Base Elevation	Proposed top of Berm Elevation (m)	Existing top of Berm Elevation (m)
SWM Pond 1	124.0	122.5 to 124.0	126.75 to 129.0	122.0 to 125.0
SWM Pond 2	122.8	117.5 to 122.5	126.3 to 126.8	117.5 to 125.0

The waterside slopes of the containment berms of the ponds would be 4H:1V and the landside or downstream slopes of the embankments would be 3H:1V. The top width of the berms will be approximately 3 m.

Three boreholes, numbered 12, 210 and 211, were advanced within the footprint of the proposed SWM Pond No. 1. Fill is present at all three boreholes. The fill consists of sandy silt at Borehole 210, silty sand with some gravel at Borehole 211, and sand with trace organics at Borehole 12. The fill extends to an approximate depth of 3 m at Borehole 210 and 12, and 0.7 m at Borehole 211. The in situ test results indicate that the compactness condition of the fill is very loose to compact. Underlying the fill, a sand and gravel unit with inclusions of rock fragments was contacted in Borehole 210 extending to the explored depth of the borehole. Sand to silty sand soils are present below the fill in Boreholes 211 and BH12. At Borehole 211, the upper section of the silty sand deposit is brown, changing to grey below an approximate depth of 5.6 m. The grey sand unit is a glacial deposit; with inclusions of trace gravel and rock fragments.

Two boreholes, numbered 5 and 201 were advanced at the location of the proposed SWM Pond No. 2. The boreholes revealed that 100 to 200 mm thick layer of topsoil is present at all three boreholes. At Borehole 201, the topsoil is underlain by an approximately 400 mm thick layer of fill consisting of

gravelly sand, with some organics and traces of silt and clay. The fill at Borehole 201, and the topsoil at Boreholes 5 are underlain by native soil. The native soil present at Borehole 201 consists of sand with inclusions of rock fragments. In Borehole 5 the native soil consists of medium to coarse sand and gravel.

The groundwater table across the area of the ponds is situated below elevation 120 m and is not anticipated to impact construction and continued performance of the ponds, as the bases of the ponds would be set above elevation 122.8 m.

Based on the available information, the bases of the ponds would be raised by as much as 5 m, and the containment berms would be raised by as much as 7 m. The soil present within the bases and side slopes of SWM Pond 1 consist of up to 3 m of loose fill underlain by sandy and gravelly soils. The soil that is present within the bases and side slopes of SWM Pond 2 consist of a thin (less than 400 mm thick) layer of topsoil or fill underlain by sand and gravelly soil.

Based on the above considerations the following recommendations are provided for construction of the proposed ponds:

- The existing topsoil, organic soil and any fill materials present within the footprints of the stormwater ponds must be removed down to the native soil stratum.
- Fill placed within the bases and containment berms of the pond should consist of clayey soils and compacted to a minimum 98% SPMDD.
- The uppermost at least 600 mm depth of the clayey soil placed within the pond base and sidewalls should have the following properties:
 - Plasticity Index between 7 and 65.
 - 100 percent of the particles passing 75 mm sieve.
 - Not less than 70 percent of the particles, by weight, passing the 0.075 mm sieve.
 - Not less than 20 percent of the particles, by weight, passing the 0.002 mm sieve.
 - Placed in maximum 300 mm lifts and compacted to a minimum of 98% SPMDD.
 - Placed at or slightly above optimum moisture content.

Alternatively a geosynthetic liner may be used. However since the bases and containment berms are to be raised using earth fill, installation of a compacted clay liner is considered to be more economical. Installation of a compacted clay liner is also more standard construction practice as compared to the more specialized procedures/specifications for geosynthetic liners. From a geotechnical perspective, a compacted clay liner is considered to be the preferred option.

5.4 Slope Stability Analyses

Analyses have been carried out to assess the stability of the side slopes of the completed infiltration basins and stormwater management ponds. Those analyses show a minimum factor of safety under a static loading condition with respect to global stability of 1.90; more than the required value of 1.5, which is satisfactory. Copies of the stability analyses for various sections and loading conditions are attached in Appendix 'F' of the document attached in Appendix 4. The soil parameters adopted for

design evaluations are based on interpreted in situ and laboratory test data, as well as conservative values for the proposed fills, and are given in the analysis sheets.

The proposed containment berm gradients within the ponds and basins will remain stable against any sliding failure. The minimum Safety Factor of the global stability of the embankments; 1.90, is well over the minimum specified factor of 1.5, for any of the loading conditions.

5.5 Excavation, Backfill and Dewatering

Based on the field results, excavation of the soils at this site above the bedrock can be carried out with heavy hydraulic excavators.

All excavations must be carried out in accordance with Occupational Health and Safety Act (OHSA). The soil profile at the site generally consists of an upper layer of fill which is of variable quality and variable condition. On the basis of our inspection of the soil samples, it should be assumed that the fill materials will conform to Type 3 or Type 4 classification, as given in the Occupational Health and Safety Regulations. The compact to dense sand soils stiff silty clay which lie above the water table are expected to conform to Type 2 or Type 3 classification; below the water table the sand can be expected to behave as a flowing soil unless the soil is dewatered. Temporary excavation side-slopes should not exceed 1.0 horizontal to 1.0 vertical. For excavations through multiple soil types, the side slope geometry is governed by the soil with the highest number designation. Locally, where very loose or soft soil is encountered at shallow depths or within zones of persistent seepage, it will be necessary to flatten the side slopes as necessary to achieve stable conditions. Excavation side-slopes should not be left exposed to inclement weather. Excavation slopes consisting of sandy soils will be prone to gullying in periods of wet weather, unless the slopes are properly sheeted with tarpaulins.

Where workers must enter excavations extending deeper than 1.2 m below grade, the excavation side-walls must be suitably sloped and/or braced in accordance with the Occupational Health and Safety Act and Regulation for Construction Projects. The design of temporary shoring should be in accordance with the earth pressure diagram (Figure 26.8) from the Canadian Foundation Engineering Manual.

It is anticipated that proposed sewer pipe inverts and proposed manhole chambers will be situated above the groundwater level and as such dewatering should not be necessary. Surface water should be directed away from open excavations.

Based on the existing topography at the subject site and proposed grades, it is anticipated that significant cut and fill operations will be required for development of the property.

On-site excavated inorganic native soils are considered suitable for reuse as backfill material or engineered fill, provided their water content is within 2% of their optimum moisture content (OMC) as determined by Standard Proctor test, and the materials are effectively compacted with heavy vibratory pad-type rollers (cohesive soils) and smooth drum rollers (cohesionless soils). The

compactors must be of sufficient size and energy to break down the lumps and to knead the soil into a homogeneous mass as water and compaction effort is applied. If the equipment does not have sufficient energy to break down the lumps, there is a tendency to bridging and post construction settlements. In areas of narrow trenches or confined spaces such as around foundations, foundation walls, etc., the use of aggregate fill such as Granular 'B' (OPSS 1010) is required if there is to be postconstruction grade integrity.

New fill placed to raise the existing grade must be compacted to the specified compaction requirements recommended in the preceding paragraphs. It is best to schedule deep fill placement as far in advance of finish surfacing as possible for best grade integrity.

If construction is carried out in inclement weather, there is a likelihood that some amount of road subbase supplement may be required (i.e. some sub-excavation followed by granular replacement).

Should construction proceed during the winter season, it is imperative to ensure that frozen material is not utilized as trench backfill, beneath pavements or ponds.

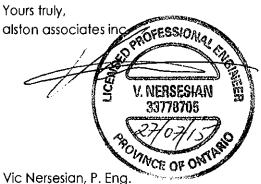
5.6 Bedding for Sewers and Water Mains

The undisturbed natural soils at the site are suitable for supporting water mains, sewer pipes, manholes, catch basins and other related structures. Based on the present site grades, sewer pipes and water mains will probably be supported on the engineered fill, or undisturbed native soil deposits.

The type of bedding depends mainly on the strength of the subgrade immediately below the invert levels.

Normal Class 'B' bedding is recommended for underground utilities. Granular 'A' or 19 mm crusherrun limestone can be used as bedding material. The bedding material should be compacted to a minimum of 96% SPMDD.

Pipe bedding and backfill for flexible pipes should be undertaken in accordance with OPSD 802.010, 802.013, and 802.014. Pipe embedment and cover for rigid pipes should be undertaken in accordance with OPSD 802.030, 802.031, 802.032, 802.033 and 802.034.


Fine sand may be used as bedding material for HDPE pipes.

If unsuitable bedding conditions occur, careful preparation and strengthening of the trench bases prior to sewer installation will be required. The subgrade may be strengthened by placing a thick mat consisting of 50 mm crusher-run limestone. Field conditions will determine the depth of stone required. Geotextiles and/or geogrids may be helpful and these options should be reviewed by AAI on a case by case basis.

Sand cover material should be placed as backfill to at least 300 mm above the top of pipes. Placement of additional granular material (thickness dictated by the type of compaction equipment) as required or use of smaller compaction equipment for the first few lifts of native material above the pipe will probably be necessary to prevent damage to the pipe during the trench backfill compaction.

Where necessary, especially within and in close proximity of ponds and pond embankments, plugs should be provided within the bedding materials to prevent water seepage through bedding material.

It is recommended that service trenches be backfilled with on-site native materials such that at least 96% of Standard Proctor Maximum Dry Density (SPMDD) is obtained in the lower zone of the trench and 98% of SPMDD for the upper 600 mm. However, prior to building the roads, the subgrade should be thoroughly proof-rolled and re-compacted to 98% of SPMDD to ensure uniformity in subgrade strength and support.

Vice President, Geotechnical Services

APPENDIX 1 PRELIMINARY GEOTECHNICAL EVALUATION, PROPOSED NEW LANDFILL MOUND, WASTE MANAGEMENT, CARP, ONTARIO, (REVISED), REF. NO. 11-066, DATED AUGUST 2, 2011

PRELIMINARY GEOTECHNICAL EVALUATION PROPOSED NEW LANDFILL MOUND WASTE MANAGEMENT CARP, ONTARIO (Revised)

Ref. No. 11-066 2 August 2011

Prepared for:

AECOM 300 Town Centre Boulevard Suite 300 Markham, Ontario L3R 5Z6

Distribution:

4 Copies - AECOM 2 Copies - Alston Associates Inc. 2 August 2011

Ref. No. 11-066

AECOM 300 Town Centre Boulevard Suite 300 Markham, Ontario L3R 5Z6

- Att: Mark Sungaila Project Manager
- Subject: Preliminary Geotechnical Evaluation Proposed New Landfill Mound Waste Management Carp, Ontario (Revised)

Following authorization from your office, a preliminary geotechnical evaluation of the study site was carried out by Alston Associates Inc. This work involved excavating five test pits within the footprint of the proposed new landfill mound, and excavating a sixth test pit exploration at a location north of the proposed mound to provide information on the near surface soil deposits in that area of the site; the purpose of the sixth test pit was to make a preliminary evaluation of that area of the site as a source of borrow material. The test pits were excavated to depths ranging from 2.3 to 5.2 m below the existing ground surface. Soil samples were taken at frequent depth intervals in the excavations to provide information regarding classification of the soils, and their engineering characteristics. Assessment of the compactness condition of the in situ soils was made using hand operated dynamic cone penetration test (DCPT) equipment. This equipment meets the requirements of DIN Standard 4094 (DPL energy). The results of the DCPT soundings can be correlated with standard penetration test N-values to give an assessment of in situ soil condition. Additional testing was carried out using hand operated static cone penetration test (CPT) equipment to measure the cone penetration resistance value of the soils.

Subsurface Conditions

The site is overlain with a layer of topsoil which ranges in thickness from 200 to 500 mm. Generally, the site is grass covered, with some areas of mature tree growth. A layer of disturbed soil underlies the topsoil at the locations of Test Pit N1. This soil unit consists of material which likely originates from the underlying sand and gravel layer.

The mineral soil deposits at the site generally consist of an upper layer of gravelly sand which is generally in the range 0.5 to 1.2 m thick. The upper sand and gravel to gravelly sand is underlain by a soil deposit consisting of silty sand with a trace of gravel, and with some zones which include an increased gravel fraction (some gravel); the silty sand includes occasional cobble and boulder sizes. The compactness condition of both granular soil deposits is compact becoming dense, as evidenced by equivalent standard penetration test N-values in the range 6 to 30 blows/300 mm in the upper 2 m of the soil profile and more than 30 blows/300 mm in the lower zone. Static cone penetrometer readings in the range 10 to 30 kg/cm² were recorded in the upper 1 to 1.5 m of the soil profile.

The water content of the sand was found to range from 8 to 21%, this range represents differences in soil composition and saturation of the soil samples. The results of grain size distribution tests carried out on representative soil samples of the upper and lower soil deposits are given in Figures 1 and 2, respectively. Falling head permeability tests were carried out on two samples of the granular soil, and the test results are reported in Figures 3 and 4. These results show a soil with a permeability in the range 10⁻⁴ to 10⁻⁵ cm/s, which is lower than would be predicted from the results of grain size distribution tests. The results of a set of direct shear tests carried out on a sample of the silty sand soil are given in Figure 5. These indicate an effective friction angle of the soil of 39°, which is somewhat higher than would be predicted on the basis of penetration index values measured by in situ testing (CPT and DCPT).

Generally, groundwater was contacted at a depth of about 1.5 to 2 m below the existing ground surface. However, it was found possible to dig beyond the depth of saturation up to a depth of more than 4 m without resort to excessive construction expedients. Seasonal variations in groundwater level should be anticipated; it should be noted that the field test program for this study was carried out following an unusually wet spring season.

Discussion

The results of the test pit excavation program have shown that the site is underlain by a deposit of gravelly sand overlying silt and fine sand soil, which extends to a depth of more than 5 m. The compactness condition of the sand is generally "compact" in the near surface sub-unit of the sand soil deposit, and "dense" in the underlying portion of the deposit which is shown by in situ testing together with the results of laboratory direct shear testing of the soil. Groundwater at the time of the site exploration was found to lie at a depth of about 1.5 to 2 m.

The compact, becoming dense condition of the sand soil deposit which underlies the site indicates that this layer will provide competent support for construction of a landfill mound. Thus, construction of a mound is unlikely to result in a slope instability in the side of the mound as a result of a failure

surface undercutting the mound and intersecting the supporting native soil deposits. The design side slope gradient of the mound will be governed by regulatory requirements and the condition of the stored landfill material, not by the supporting base.

The probable settlement of the base of the mound is expected to be modest as a result of the dense condition of much of the sand deposit. Excessive settlements are not anticipated in the foundation soil.

A limitation on the depth of excavation required to construct the base of the mound will be provided in a practical sense, by the depth to the water table at the site.

Consideration should be given to utilizing the local silty sand material amended by the addition of powdered bentonite to provide low permeability layers in the base liner of the landfill, as an alternative to silty clay borrow material.

Limitations of Report

This report provides preliminary information with regard to the geotechnical characteristics of the local soil deposit. The test pit explorations were widely spaced and extended to limited depth. It will be necessary to conduct a detailed geotechnical evaluation of the site to provide high quality design data for detailed geotechnical design of the development.

A description of limitations inherent in carrying out conventional geotechnical report is given in Appendix 'A', which is an integral part of this report.

Yours very truly, ALSTON ASSOCIATES INC.

Colin Alston, P.Eng.

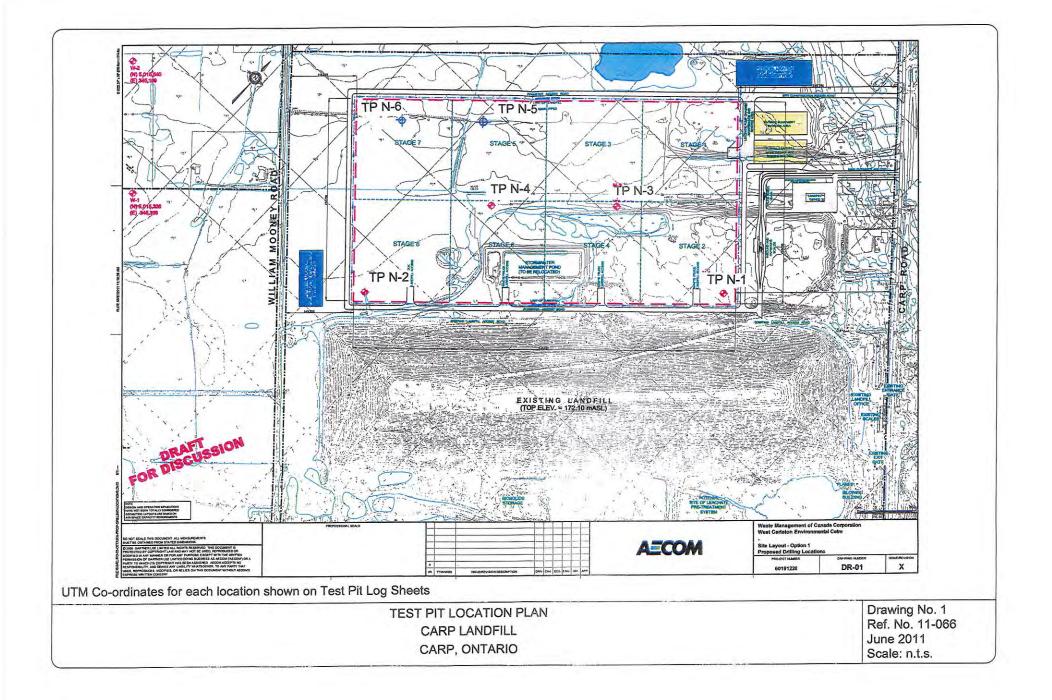
/jt

APPENDIX 'A'

Appendix 'A'

LIMITATIONS OF REPORT

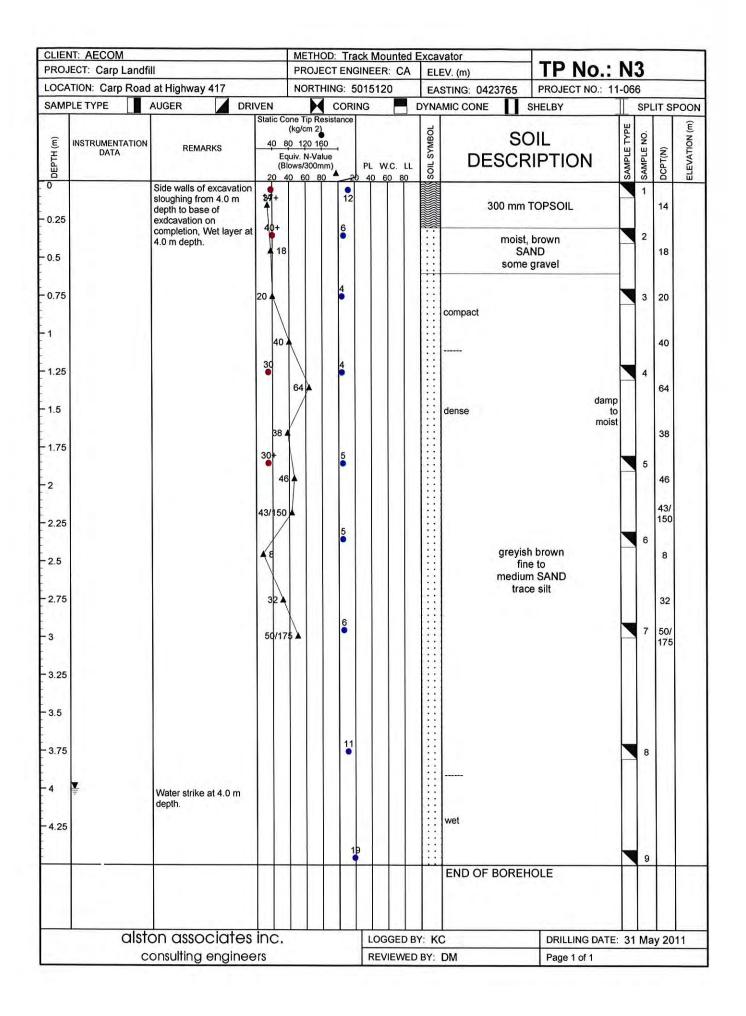
The conclusions and recommendations in this report are based on information determined at the test hole locations. Soil and groundwater conditions between and beyond the test holes may differ from those encountered at the test hole locations, and conditions may become apparent during construction which could not be detected or anticipated at the time of the soil investigation.


The design recommendations given in this report are applicable only to the project described in the text, and then only if constructed substantially in accordance with details of alignment and elevations stated in the report. Since all details of the design may not be known to us, in our analysis certain assumptions had to be made as set out in this report. The actual conditions may, however, vary from those assumed, in which case changes and modifications may be required to our recommendations.

This report was prepared for AECOM by Alston Associates Inc. The material in it reflects Alston Associates Inc. judgement in light of the information available to it at the time of preparation. Any use which a Third Party makes of this report, or any reliance on decisions which the Third Party may make based on it, are the sole responsibility of such Third Parties.

We recommend, therefore, that we be retained during the final design stage to review the design drawings and to verify that they are consistent with our recommendations or the assumptions made in our analysis. We recommend also that we be retained during construction to confirm that the subsurface conditions throughout the site do not deviate materially from those encountered in the test holes. In cases where these recommendations are not followed, the company's responsibility is limited to accurately interpreting the conditions encountered at the test holes, only.

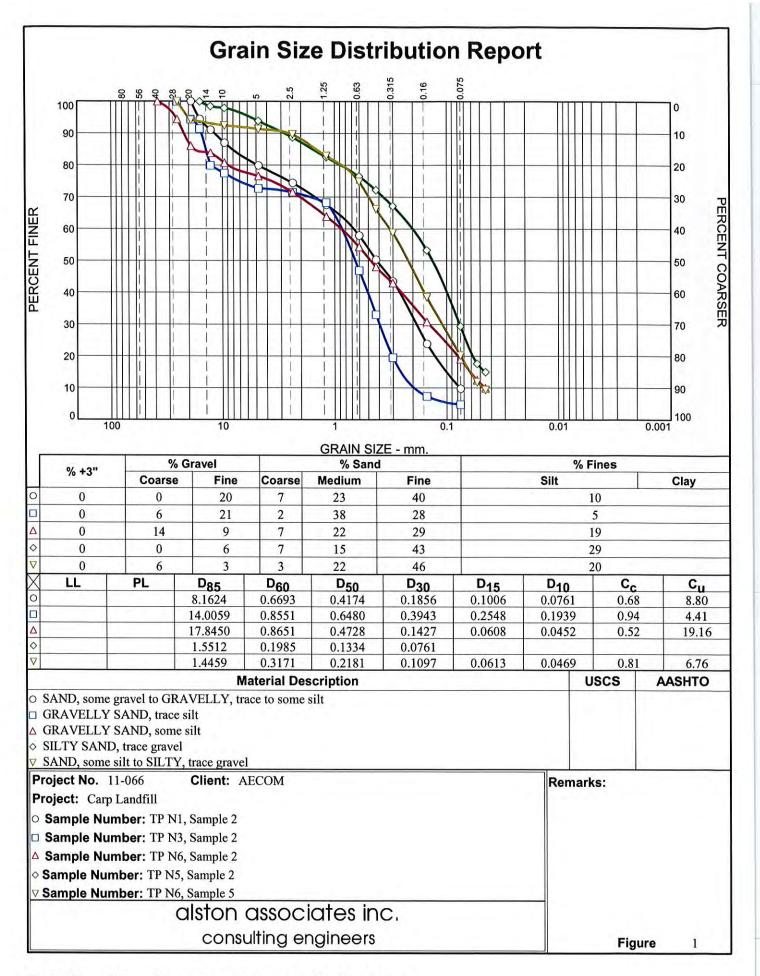
The comments given in this report on potential construction problems and possible methods are intended for the guidance of the design engineer, only. The number of test holes may not be sufficient to determine all the factors that may affect construction methods and costs. The contractors bidding on this project or undertaking the construction should, therefore, make their own interpretation of the factual information presented and draw their own conclusions as to how the subsurface conditions may affect their work.


ENCLOSURES

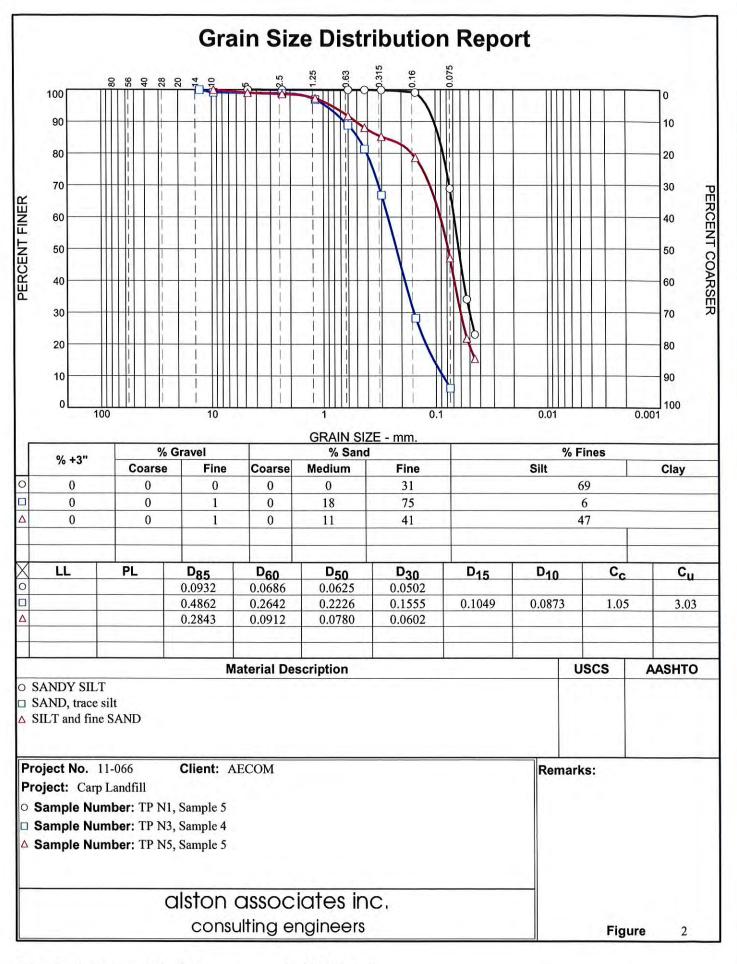
	NT: AECOM JECT: Carp Landfi	1		METHOD: Track M PROJECT ENGINEE			ator /. (m)	TP No.:	N	1	
	TION: Carp Road			NORTHING: 50150			TING: 0424059	PROJECT NO .:		-	
SAM	PLE TYPE	AUGER	DRIVEN	CORING	-	DYNAN		SHELBY	T	SPL	IT SPOC
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 E		W.C. LL	SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	DCPT(N) ELEVATION (m)
0		Test pit cave-in at 5. below ground surface completion.	20 D • 0 e on 23		60 80	×			0	1	
- 0.5			30	13	1 and a second		moist,	brown		2	
- 0.75							trace to :	d gravel some silt BLE FILL)			
- 1 - 1.25			10	11						3	
- 1.5		Slow water infiltration to test pit at 1.9 to 2. depth.		8						4	
- 1.75											
- 2 - 2.25				17						5	
- 2.5	-			20						6	
- 2.75									-		
- 3 - 3.25				11			to gi SILT	bist GRAVEL wet rey Fand		7	
- 3.5							fine \$	SAND			
- 3.75				17						8	
- 4											
- 4.5				1						9	
- 4.75											
		on associate					M	DRILLING DAT Page 1 of 2	E: 3	1 Ma	ay 2011

CLIE	NT: AECOM			ME	THOD	Tra	ack	Mou	intec	Exc	ca١	vator					
	JECT: Carp Landfi			PRO	DJECI	EN(GINE	EER:	CA	E	ELE	EV. (m)	<u>TP No.:</u>	<u>TP No.: N1</u>			
	TION: Carp Road	· · · · · · · · · · · · · · · · · · ·		-		IG:	5013	5067		6	EA	STING: 0424059	PROJECT NO.: 11-066				
SAM	PLE TYPE	AUGER DRI	VEN			COR	ING			DY	NA	MIC CONE	HELBY		SPL		NOO
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8 E0 (B	one Tip Resistance (kg/cmg 2) 30 120 160 juliv. N-Value lows/300mm) 0 60 80 20 40 60 80					SAMPLE TYPE	SAMPLE NO.	DCPT(N)	ELEVATION (m)					
-5		Side walls caving at 5.0				9						see bottom of p			10		
	alst	on associates	inc.					LOGe	GED			END OF BOREHO	DLE	. 31		y 20	11
	с	onsulting enginee	ers				F	REVI	EWE	DB	Y:	DM	Page 2 of 2				

	T: AECOM	ĩII								Mou EER:				vator EV. (m)	TP No.:	TP No.: N2 PROJECT NO.: 11-066		_		
LOCA	TION: Carp Roa	d at Highway 417			NO	RTI	HING	G: 5	5014	4562	2		EA	STING: 0423450	1					
SAM		AUGER DRI	VEN			K		OR	NG			D	YNA		SHELBY		SPL	IT S	POON	
DEPTH (m)	INSTRUMENTATION DATA	REMARKS) <u>8(</u> Eqi (Blo	ne Ti (kg/c 0 12 uiv. N ows/3 0 60	m 2) 10 16 N-Va 300m	30 ilue nm)			- W.			SOIL SYMBOL	SC DESCR	DIL RIPTION	SAMPLE TYPE	SAMPLE NO.	DCPT(N)	ELEVATION (m)	
0.25		Water level at 1.2 m and side walls of excavation sloughing from 1.2 m depth to base of exdcavation on completion.	15 ●										20023	moist, SAND and	TOPSOIL brown J GRAVEL e silt		1 2			
0.75 1			30											moist			3			
· 1.25 · 1.5		Fast water infiltration in 1 to test pit at 1.2 m depth Dynamic Cone penetration test advanced from 1.4 to 2.4 m depth.												fine mediun trace	own e to n SAND gravel e silt		4			
- 1.75 - 2		2.4 m deput.	17											wet	compac	-	5	17 29		
- 2.25				Y	36/	175									dens	e		36/ 175		
		Refusal to advancement of dynamic cone test, probable boulder.												END OF BOREH	IOLE					
	 alst	on associates	inc	L) BY	 ′: К	 c		 E: 31	i M≈	<u> </u>	 11	
		consulting enginee		- 1					- H					OM	Page 1 of 1			,		

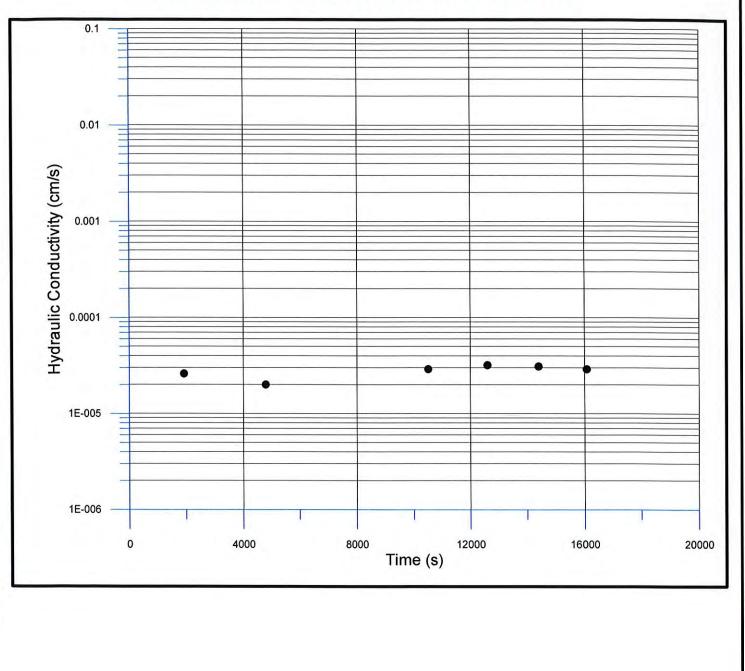

	NT: AECOM ECT: Carp Landfi	I!		METHOD: Tra			<u>/ator</u> EV. (m)	TP No.	TP No.: N4	
	TION: Carp Road			NORTHING: 5	014894	EAS	STING: 0423507	PROJECT NO .:		
SAMF		AUGER DRI	VEN		NG	DYNA		SHELBY		IT SPOON
O DEPTH (m)	INSTRUMENTATION DATA	REMARKS Test pit cave-in at 1.8 m and water level at 1.8 m	40 (20 ● 17	Cone Tip Resistance (kg/cm 2) 80 120 160 Guiv. N-Value Blows/300mm) 40 60 80	PL W.C. LI	SOIL SYMBOL	DESCR	DIL RIPTION	SAMPLE TYPE 5 SAMPLE NO.	DCPT(N) ELEVATION (m)
0.25		below ground surface on completion.	30				400 mm 1	TOPSOIL		
• 0.75 • 1			30				me bro SA	np to bist wm ND gravel	2	
- 1.25 - 1.5		Boulder contacted at 1.5 m depth.							4	
- 1.75 - 2 - 2.25	₹ -	Water quickly infiltrating at 1.8 m depth.	30+				greyisl SIL1	oist h brown Γ and SAND	5	
- 2.5 - 2.75 - 3							fin	brown e to n SAND	6	
							END OF BOREH	IOLE		
	alet	on associates	inc	!			<u> </u>	DRILLING DA		
			л К С		I I RAGEO	нт'К(

	OIL OIL OIL OIL OIL OIL 2 3 4 21 4 25 27
SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY INSTRUMENTATION DATA REMARKS Static Cone Tip Resistance (kg/cm 2) 40 80 120 160 Equiv. NVAlue (Blows/300mm) PL W.C. LL 20 40 60 80 00 50 SOIL DESCRIPTI 0 Test pit side walls cave- in at 1.2 m below ground surface on completion. Test pit side walls cave- in at 1.2 m below ground surface on completion. 16 Ioose, moist, brow SAND, some grav trace to some si 0.5 DCPT rods wet at 0.8 m depth. 11 21 11 Ioose, moist, brow SAND, some grav trace to some si 1.5 27 11 11 Ioose, moist, brow SAND, some grav trace to some si SULT and compact 1.75 Very slow water infiltration at 2.4 m 11 21 Ioose, moist, brow SAND	TION SPLIT SF -ION S
INSTRUMENTATION DATA REMARKS Static Core Tp Resistance (kg/cn 2) Description (kg/cn 2) 0 Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. PL WC. LL 20 40 60 80 120 140 40 80 120 140 PL WC. LL 20 40 60 80 DESCRIPTI 23 0 Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completion. Test pit side wallis cave- in at 1.2 m below ground surface on completin. Test pit side wallis cave- in at 1.2 m be	OIL OIL OWN avel silt 3 15 21 4 25 27
10.25 10.25 500 mm TOPSO 0.25 0.5 15 18 0.75 DCPT rods wet at 0.8 m 15 23 11 11 21 11 1.25 11 11 11 1.25 11 11 11 1.25 11 11 11 1.25 11 11 11 1.25 18 11 11 1.25 18 10 10 1.75 18 11 11 1.75 18 11 11 1.25 11 11 11 1.25 11 11 11 1.25 11 11 11 1.25 18 18 10 27 18 18 11 1.75 18 18 11 22 61 21 11 18 18 10 10 19 11 11 11 10 11 11 11 11 11 11 11 12 13 11 11 14 12 11 11	OIL own avel silt 3 15 21 4 25 27
-1.25 -1.5 -1.75 -2 -2.25 Very slow water infiltration at 2.4 m	4 25 27
- 2.25 - 2.25 Very slow water infiltration at 2.4 m	5 32
	6
alston associates inc. Logged by: KC DRIL	RILLING DATE: 1 June 201


	NT: AECOM IECT: Carp Landfi			METHC PROJE						EV. (m)	TP No.	TP No.: N6 PROJECT NO.: 11-066				
	TION: Carp Road			NORTH						STING: 0423264						
			VEN	N I	COR				•		SHELBY			IT SI	POON	
DEPTH (m)		REMARKS	Static C 40 : E (B	cone Tip Re: (kg/cm 2) 80 120 160 90 120 160 90 120 160 90 100 100 90 100 90 90 100 90 100 100 100 1000 10	sistance D ue m)	PL	W.C. 60	 LL	SOIL SYMBOL	SC	DIL RIPTION	SAMPLE TYPE	SAMPLE NO.	DCPT(N)	ELEVATION (m)	
0		Test pit dry and open on completion.					Ĩ	Ī		200 mm	TOPSOIL		1			
- 0.25 - 0.5			30+										2			
- 0.75 - 1			30+							damp SA som	o brown to moist ND ne silt gravel					
- 1.25													3			
- 1.5 - 1.75													4			
- 2.25										SILTY mediu	o, grey ′ fine to m SAND gravel		5			
- 2.75							:			END OF BOREF			6	6		
		on associates				L	OGGE	ED B	Y: K	с	DRILLING DA	ATE: 1	June	e 201	1	
	c	onsulting enginee	ers			R	EVIE	WED	BY:	DM	Page 1 of 1	-				

.

.



Tested By: <u>○ RP</u> □ GP △ RP ◇ GP ⊽ RP Checked By: <u>JB</u>

Tested By: ● GP ■ GP ▲ RP

HYDRAULIC CONDUCTIVITY TEST REPORT

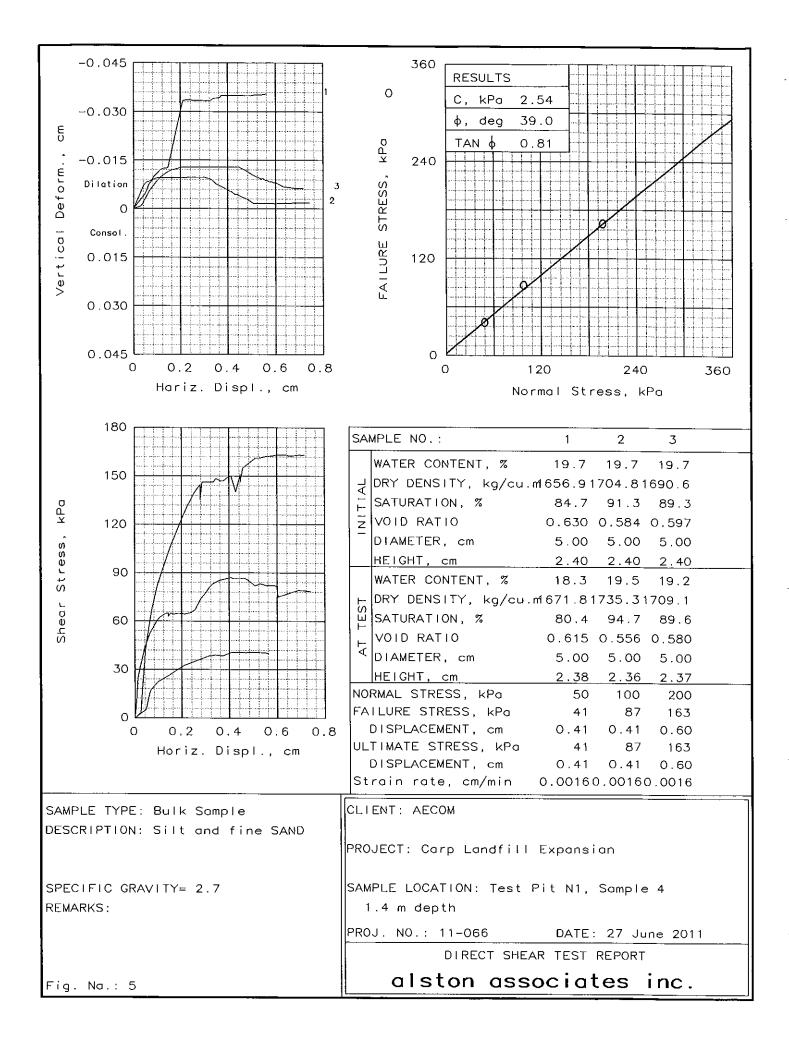

Client: AECOM Project: Carp Landfill Extension Alston Associates Inc. Ref. No.: 11-066 Material Description: Silty Sand to Sandy Silt Sample Location: Test Pit N5, Sample 3 Final Hydraulic Conductivity Reading (cm/s): 2.9 x 10⁻⁵

alston associates inc.

Figure No. 3

Remarks:

HYDRAULIC CONDUCTIVITY TEST REPORT



Client: AECOM Project: Carp Landfill Extension Alston Associates Inc. Ref. No.: 11-066 Material Description: Silty Sand to Sandy Silt Sample Location: Test Pit N1, Sample 4 Final Hydraulic Conductivity Reading (cm/s): 6.5 x 10⁻⁵

alston associates inc.

Figure No. 4

Remarks:

APPENDIX 2 GEOTECHNICAL INVESTIGATION, WASTE MANAGEMENT, CARP ROAD, CARP, ONTARIO REF. NO. 13-107, DATED DECEMBER 3, 2013

GEOTECHNICAL INVESTIGATION WASTE MANAGEMENT CARP ROAD CARP, ONTARIO

Ref. No. 13-107 3 December 2013

AECOM Canada 300 Town Centre Blvd. Markham, Ontario L3R 5Z6

Distribution:

8 Copies	-	AECOM Canada
1 Copy	-	Alston Associates Inc.

CONTENTS

1.0		1
2.0	BACKGROUND	1
3.0	FIELDWORK	1
4.0	SITE AND SUBSURFACE CONDITION.4.1Site Description.4.2Fill.4.3Topsoil.4.4Silt and Fine Sand.4.5Silt and Sand (Till).4.6Bedrock.4.7Results of Soundings.4.8Groundwater.	3 3 4 4 5 6 6
5.0	DISCUSSION AND RECOMMENDATIONS.5.1Site Preparation.5.2Landfill Liner.5.3Slope Stability Analysis - Final Design.5.4Slope Stability Analysis - Liner Construction.5.5Settlement.5.6Storm Water Infiltration Ponds.5.7Building Developments.	7 7 8 9 9
6.0		10
	APPENDICES	

LIMITATIONS OF REPORT Ap	ppendix 'A'
SUBSURFACE INFORMATION BY WESA	ppendix 'B'
TEST PIT RESULTS AND LOCATION PLAN	opendix 'C'
LANDFILL LAYOUT AND CONSTRUCTION Ap	opendix 'D'
SLOPE STABILITY ANALYSIS (COMPLETED LANDFILL) Ap	ppendix 'E'
SETTLEMENT ANALYSIS Ap	ppendix 'F'
LANDFILL LINER DESIGN Ap	opendix 'G'

ENCLOSURES

Drawing No. 1	BOREHOLE LOCATION PLAN.
Borehole Nos. 1 to 12	BOREHOLE LOG SHEETS
DCPT 12A	DCPT RESULTS
DMT 101 and 102	DMT RESULTS
Figures 1 and 2	STRATIGRAPHIC SECTIONS
Figures 3 and 4	N-VALUE VS DEPTH
Figure Nos. 5, 6, 7 and 8	GRAIN SIZE ANALYSIS

1.0 INTRODUCTION

Alston Associates Inc. has been retained by AECOM Canada on behalf of Waste Management of Canada Corporation to carry out a geotechical investigation at the site of a proposed landfill development located in Carp, Ontario. The development site lies immediately north of a closed landfill site which, in turn lies north of Highway 417 and west of Carp Road. Authorization to proceed with this study was given by Larry Fedec of AECOM Canada.

The purpose of this study has been to develop geotechnical data for the site and to present geotechnical design recommendations for the landfill facility.

2.0 BACKGROUND

Borehole data for the site have been developed by Water and Earth Science Associates (WESA), who have advanced several boreholes which fully penetrate the soil profile and extend into the underlying bedrock stratum. Those data include a detailed reporting of the groundwater levels at the site. A detailed description of the hydrogeology of the site has been developed by WESA and is presented in their report for the proposed site development regarding the Geology and Hydrogeology, existing conditions. A copy of the location plan which shows the positions of the WESA boreholes and records of the borehole data which are relevant to the geotechnical design of the proposed copies of landfill are attached in Appendix 'B'.

A preliminary geotechnical evaluation of the site was carried out by Alston Associates Inc. in 2011 and the results of that preliminary investigation were presented in report Ref. No. 11-066. Copies of the location plan, test pit logs and laboratory test results from that study are attached in Appendix 'C'.

3.0 FIELDWORK

The fieldwork for the current geotechnhical study of the proposed landfill site involved advancing a total of twelve sampled boreholes at the site. Those data are complemented by the results of two soundings advanced using a Marchetti Flat Plat Dilatometer (DMT) and one sounding by the Dynamic Cone Penetration test (DCPT) method.

Eight boreholes; Boreholes numbered 1, 2, 3, 6, 7, 9, 10 and 11 were located within the footprint of the proposed landfill site. The remaining four boreholes; Boreholes Numbered 4, 5, 8 and 12, which were instrumented with 50 mm diameter monitoring wells were located within the area of proposed infiltration basins. The locations of these boreholes were chosen by WESA.

Standard penetration tests were carried out at frequent intervals of depths in the sampled boreholes to take representative soil samples and to measure the penetration index values (N-values) of the in situ soils. Each of the boreholes was advanced to the depth of refusal to further advancement of the boreholes. At locations where shallow refusal was encountered (Boreholes 4 and 5), a second boring was advanced in close proximity to the borehole to confirm the depth of refusal.

The Marchetti Flat Dilatometer (DMT) features a thin blade shape probe which incorporates a pressure cell. The probe is advanced into the ground and at 200 mm depth increments, the downward progress is arrested. At each arrest point the cell is activated to record the enclosing soil pressure and the force required to deform the enclosing soils. From these direct, operator independent measurements are interpreted the traditional geotechnical parameters of unit weight, angle of internal friction and constrained (defamation) modulus. The engineering behaviour of the soil is interpreted from the measurements, as well.

The Dynamic Cone Penetration test (DCPT) involves driving a 50 mm outside diameter cone into the ground continuously using standard penetration test (DPSH) energy. The number of blows of the driving hammer taken to advance the cone through successive 300 mm depth increments is recorded as an index value. For practical purposes, this approximates to the standard penetration test N-value.

The fieldwork for this study was supervised on a full-time basis by an experienced field supervisor from this office who exercised geotechnical control over the sampling and in situ testing operations. The supervisor recorded groundwater conditions occurring in the boreholes at the time of their advancement. The groundwater observations are a complement to but do not supercede the data reported and described by WESA.

4.0 SITE AND SUBSURFACE CONDITION

Full details of the subsurface conditions contacted in the current geotechnical explorations are given on the log sheets of Borehole Nos. 1 through 12, DMT's 101 and 102 and DCPT 12A.

Interpreted stratigraphic profiles along the northern and southern limits of the proposed landfill development are given in Figures 1 and 2, respectively. A summary of the standard penetration test N-values plotted against depth is given in Figures 3 and 4; the plot for the in situ test results from Boreholes 6 and 7 is shown in Figure 4 to provide comparison with DMT data.

The following paragraphs present a description of the engineering characteristics of the various soil materials contacted in the boreholes.

4.1 <u>Site Description</u>

The site lies immediately north of the existing closed Carp landfill site which was operated by Waste Management. The study site area is presently used for agricultural purposes and is undeveloped, however, it is noted that prior excavations which lie at the eastern limit of the site have been backfilled to provide a level ground surface.

There is a limestone quarry operation lying on the east side of Carp Road.

The area of the proposed landfill site slopes down gently from the southwest to the northeast; the ground surface elevations ranging from a high of 127.5 m at Borehole 9, to 123.3 m at Borehole 3. There are no salient surface features which would affect the proposed site development. The ground surface elevations at the locations of Boreholes 4 and 5; 118.6 m and 117.5 m respectively are relatively lower than the remaining boreholes.

4.2 <u>Fill</u>

A surficial layer of fill materials was contacted in Boreholes 4, 8 and 12. The fill consists of sand in Borehole 8 and a mixture of sand and topsoil with wood pieces in Borehole 12.

Borehole 4 was advanced through a site access road and at this location, the fill consists of sand and gravel.

Standard penetration tests carried out in the fill layer recorded N-values ranging from 2 to 47 blows/300 mm, and more commonly in the range 2 to 7 blows/300 mm. The high measured N-value is attributed to the sampling spoon striking a larger particle embedded within the fill and is not considered representative of the general condition of the fill soils. Based on the measured N-values, it is interpreted that the fills are very loose to loose and that the materials were placed without selection or dense compaction. It is understood that fills were placed to provide a level surface in areas previously occupied by lagoon features, which are located at the eastern limit of the site.

The water content of the fill material was found to range from 4 to 8%. These test results indicate that the organic content in the fill is relatively minor.

4.3 <u>Topsoil</u>

Topsoil covers the site through most of the proposed development area. Typically the topsoil is relatively thin, ranging from about 70 to 200 mm in thickness.

4.4 Silt and Fine Sand

The site cover layers are underlain by a layer of silt and fine sand, the soil fractions are present in varying proportions (sandy silt to silty fine sand) with a trace of clay at the location of Boreholes 6, 7, 9, 10, 11 and 12. In general the soil deposit is brown in the near surface zone and below a depth of about 1 to 1.5 m, the soil colouration is grey. In several boreholes, the near surface soils were found to be disturbed; it is probable that the disturbance is a result of agricultural activity.

Standard penetration tests carried out in the silt to sand soil deposit measured N-values ranging from 6 to 75 blows/300 mm which represents a range of soil condition from loose to very dense. In general the low N-values were measured at shallow depths; below a depth of about 1 m, the in situ test results indicate that the soils are compact to dense.

The results of grain size distribution tests carried out on samples of the silt to sand soil are given in Figures 5 and 6, which are attached to this report. Previous laboratory testing shows a similar soil gradation. Permeability tests carried out on the soil show coefficient values ranging from about 3 to 6 x 10⁻⁵ cm/s. A laboratory shear test carried out on a sample of this soil measured an angle of internal friction of 39°, refer to Appendix 'C'.

4.5 Silt and Sand (Till)

Below the silt to sand soil deposit in the above noted boreholes and below the surficial soil layers in the balance of the site, a soil deposit consisting of silt and sand with some gravel, cobbles and boulders and a trace of clay was encountered. The unsorted character of this soil stratum indicates that it is likely of glacial origin and may therefore be referred to as a till. Generally, the soil colour is grey. Occasional lenses of silty clay soil are included within this soil stratum, which extends to the bedrock surface.

Standard penetration tests carried out in the silt to sand till material measured N-values ranging from 14 to more than 100/blows 300 mm. Typically the progression in soil compactness condition is compact in the near surface zone of the stratum, rapidly becoming dense then very dense.

The water content values of the till soils were found to range from 5% to 10%, which is consistent with the gradation and density of the soils. A water content value of 26% was measured on a sample of an included silty clay lens (or layer).

The results of grain size distribution tests carried out on samples of the silt to sand till soil are given on Figures 7 and 8.

Boreholes 4A and 5A were advanced in the area of prior site excavations. The remaining thickness of the soil profile at the explorations is about 1.5 to 2.5 m, the depth of auger refusal is at an elevation comparable with rockhead as given on WESA Boreholes 65 and 73 which shows that bedrock in this area was at a depth ranging from about 7 to 12 m.

4.6 Bedrock

Boreholes advanced by WESA were carried into the bedrock stratum. A full description of the profile of rockhead and the condition of the bedrock is given in the companion report by WESA.

4.7 <u>Results of Soundings</u>

Soundings were carried out by using the Flat Plate Dilatometer in the central portion of the development area. The interpreted results of the soundings show that the shear strength characteristics of the soil are represented by friction angles generally in the range 37° to 41° and deformation modulus of generally more than 150 MPa (1500 bars) below the loose, near surface subunit of the soil profile. The interpreted values of angle of internal friction from the DMT soundings are comparable with the laboratory direct shear test results.

4.8 Groundwater

Groundwater was contacted in all boreholes and was found to lie at depths ranging between about 1 and 4.5 m at the time of undertaking this investigation. Measurements of stabilized groundwater table elevation have been taken by WESA who have also prepared an analysis of the hydrogeological data, including the direction of flow at the site.

5.0 DISCUSSION AND RECOMMENDATIONS

It is proposed to construct a landfill on the study site which will be up to about 30 m high above the existing ground surface. Site preparation will involve removal of the topsoil layer and any shallow fill materials which lie beneath the footprint of the landfill, and construction of a fill pad to provide the design base profile.

The preliminary target density for the emplaced landfill material given in the development prospectus is 7.8 kN/m³. That density has been adopted for geotechnical analysis of facility design.

Drawings illustrating the layout and construction of the landfill are given in Drawing Nos. FCR-02-03-10 and -11 by AECOM. It is proposed that the design should meet the current "generic design" for landfills by the Ontario Ministry of the Environment. Copies of the referenced drawings are attached in Appendix 'D'.

5.1 <u>Site Preparation</u>

Measurements of the stabilized groundwater table elevation at the site show that mostly, the water table lies at shallow depth. For ease of site preparation it is proposed that the base of the landfill will be positioned above the groundwater table. Site preparation will involve removing topsoil and shallow fill materials and adjusting the elevation of the subgrade by laying engineered fill materials as required by the profile design. Base preparation will involve the following operations:

- Remove topsoil and fill materials beneath landfill footprint;
- Compact the exposed subgrade to a dry density of not less than 98% of the material's standard Proctor maximum dry density;
- Lay fill materials as required by landfill design in lifts appropriate to the compaction equipment, and thoroughly and uniformly compact the fill materials to 98% SPMDD.

Based on the results of test pit and borehole data for the site, the local soil materials may be used as engineered fills for adjustment of base grade and profile. Based on a review of the gradation of the soil, it is anticipated that efficient compaction of engineered fill material will be sensitive to placement water content; some moisture conditioning of the material is expected.

5.2 Landfill Liner

It is noted that a generic Ministry of the Environment liner is to be constructed on the site. This will involve importing suitable compactible low permeability silty clay materials which are laid and compacted to meet the project specifications. The proposed design is shown on Drawing SK5 by Genivar, refer to Appendix 'G'.

Ref. No. 13-107

It is noted that the local silt to sand till material and the local silt to fine sand soils possess a gradation which is appropriate for amendment with Bentonite materials to provide a low permeability liner, should this be advantageous to the proposed development.

5.3 Slope Stability Analysis - Final Design

Analyses have been carried out to assess the stability of the side slopes of the completed landfill facility following final profiling of the slopes immediately prior to closure. Those analyses show a factor of safety under a static loading condition with respect to global stability of more than the required design value of 1.5, which is satisfactory. A copy of the stability analysis for the final side slope is attached in Appendix 'E'. The soil parameters adopted for design evaluation are based on interpreted in situ and laboratory test data, and are given in the analysis sheets.

The stability of temporary slopes which will be developed in the course of construction of the landfill facility is governed by the character, placement and compaction of the landfill materials. Typically, it is found that a gradient of 50% (1V:2H) is satisfactory, for excavation above the groundwater table, in native soil.

5.4 Slope Stability Analysis - Liner Construction

It is proposed to complete the construction of the liner, including the 2.5 m high slope at a 25% (IV:4H) gradient, at the liner perimeter. This slope must be stable in the period prior to placement of landfill as well as in service life. The relevant selected geotechnical parameters are given below:

- Compacted clay landfill liner and attenuation layer unit weight 19.5 kN/m³, cohesion intercept nil, effective angle of internal friction 28°;
- Interface friction angle between non-woven geotextile and compacted day line 28°;
- Interface friction angle between non-woven geotextile and granular drainage layer,
 36°;
- Interface friction angle between non-woven geotextile and textured geomembrane 36°;

Ref. No. 13-107

Interface friction angle between textured geomembrane and compacted clay landfill liner 28°.

The listed parameters show that the critical layers for slope instability are the compacted clay liners; the clay material governs the interface properties. Thus, presuming that the critical failure mode will be sliding, the factor of safety with respect to slope instability is more than 2 for the static condition, which is satisfactory.

5.5 <u>Settlement</u>

An analysis of the expected settlement which will occur in the soils which underlie the landfill has been carried out using values of deformation (constrained) modulus measured by DMT. The results of analysis show that the maximum expected settlement in the native soils is less than 20 mm. Copies of settlement analyses in both east-west and north-south directions and which show estimated settlement along the length of the selected sections are attached in Appendix 'F'. On the basis that the soil profile consists of predominantly granular type soils, the rate of settlement is expected to be relatively rapid following the application.

5.6 Storm Water Infiltration Ponds

Storm water detention ponds are to be constructed at the eastern limit of the site. The results of the borehole data developed for the detention lagoons indicates that the side slope of the lagoons can be safely profiled to a gradient of 33% (IV:3H) provided that erosion resistant slope covers are introduced into the lagoon designs. Other considerations such as pond liner system may require adoption of flatter slope gradient.

5.7 Building Developments

Numerous building developments are anticipated at the site. However, those building locations have not been finalized. Based on the results of the boreholes advanced at the site, it is anticipated that conventional footing foundations applying a bearing pressure at Serviceability Limit States of 120 kPa at a depth below the ground surface of not less than 1.5 m (for heated buildings) may be adopted for preliminary design. It is anticipated that the site classification with respect to seismic site response will be Class 'D' with regard to

Ref. No. 13-107

building developments. Specific recommendations will be prepared when the site layout has been finalized.

6.0 LIMITATIONS OF REPORT

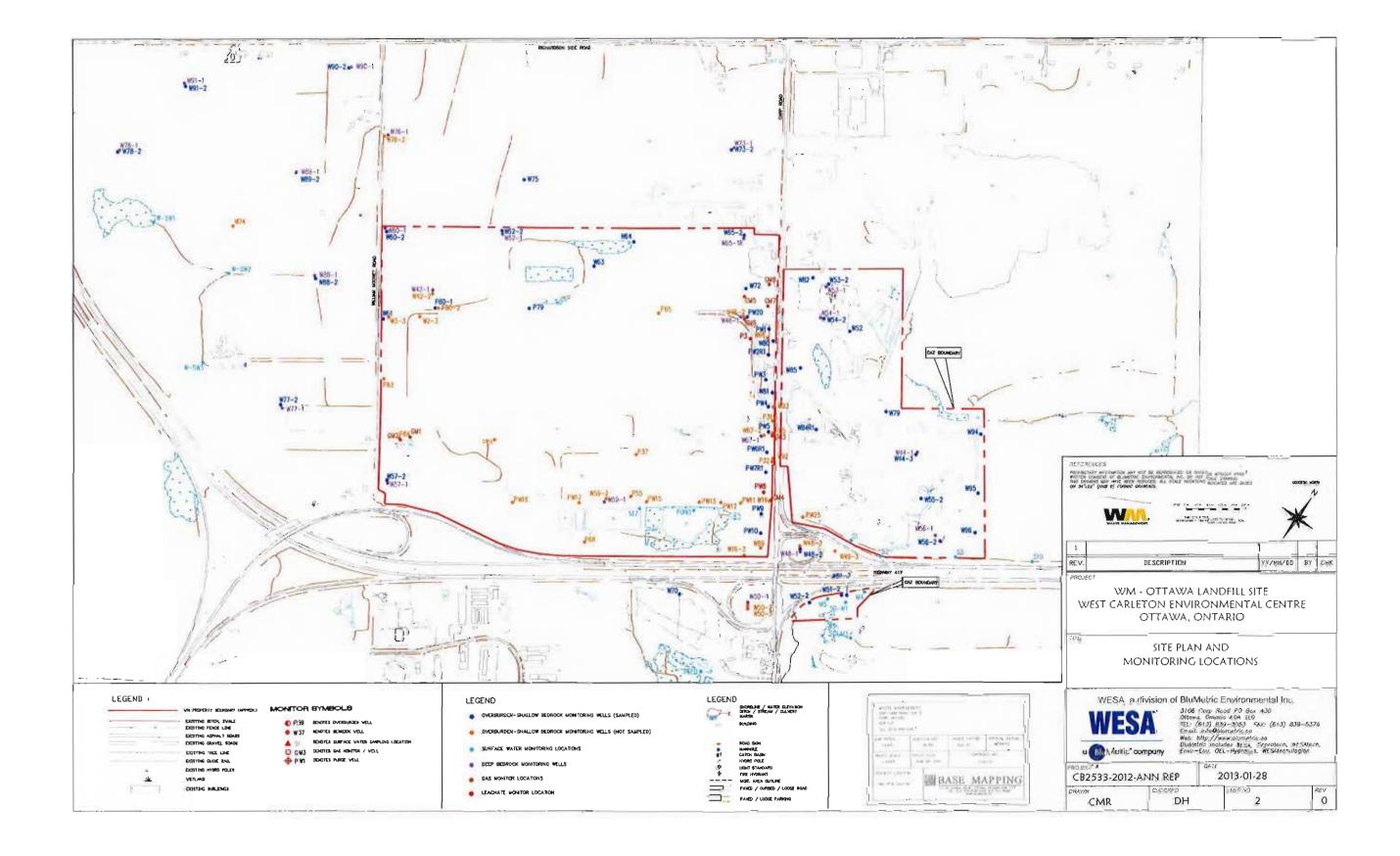
The Limitations of Report, as quoted in Appendix 'A', are an integral part of this report.

APPENDIX 'A'

Appendix 'A'

LIMITATIONS OF REPORT

The conclusions and recommendations in this report are based on information determined at the test hole locations. Soil and groundwater conditions between and beyond the test holes may differ from those encountered at the test hole locations, and conditions may become apparent during construction which could not be detected or anticipated at the time of the soil investigation.


The design recommendations given in this report are applicable only to the project described in the text, and then only if constructed substantially in accordance with details of alignment and elevations stated in the report. Since all details of the design may not be known to us, in our analysis certain assumptions had to be made as set out in this report. The actual conditions may, however, vary from those assumed, in which case changes and modifications may be required to our recommendations.

This report was prepared for AECOM Canada by Alston Associates Inc. The material in it reflects Alston Associates Inc. judgement in light of the information available to it at the time of preparation. Any use which a Third Party makes of this report, or any reliance on decisions which the Third Party may make based on it, are the sole responsibility of such Third Parties.

We recommend, therefore, that we be retained during the final design stage to review the design drawings and to verify that they are consistent with our recommendations or the assumptions made in our analysis. We recommend also that we be retained during construction to confirm that the subsurface conditions throughout the site do not deviate materially from those encountered in the test holes. In cases where these recommendations are not followed, the company's responsibility is limited to accurately interpreting the conditions encountered at the test holes, only.

The comments given in this report on potential construction problems and possible methods are intended for the guidance of the design engineer, only. The number of test holes may not be sufficient to determine all the factors that may affect construction methods and costs. The contractors bidding on this project or undertaking the construction should, therefore, make their own interpretation of the factual information presented and draw their own conclusions as to how the subsurface conditions may affect their work.

APPENDIX 'B'

.

Well ID: W60-1

Project: Hydrogeological Characterization

Client: Waste Management of Canada Corp.

Location: Ottawa, Ontario

Log File: B2653w60-1 Tem. File: B2653br

Field Personnel: B.A.

		-						
	S	UBSURFACE PROFILE		5	Rock	6		1
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation 20 60	Fracture Frequency/ Run	Comments	K (m/sec)
1 m		Ground Surface	125.02					
1 2 3 4 4		Sand Very loose, medium brown, medium grained Sand, with a trace of gravel.	123.65				s/u 0.63m TPVC 100mm ² sleel protective casing prouted to surface Elev. 125.55m TPVC	
5 6 7 7 2		Sand Very dense, grey, wet, Sand, with some gravel.	123.19				wil data recorded Jan. 6, 2004	
8 9 10 11 11		Silty Sand Medium dense, grey, wet, fine grained silty Sand.			· · · · · · · · · · · · · · · · · · ·			
		Silt	121.06					
15— 16— г		Loose, gray, saturaeted, Silt, with some fine grained grained gravel and a trace of sand.	120.14		• - f f			
17를 ~ 18를 ~		Silty Sand Till Very dense, grey, poorly graded, silty sand Till, with gravel, cobbles and boulders. Silt	118.56		· · · · · · · · · · · · · · · · · · ·			
223 224 225 26 26 26 26 27 26 27 26 27 28 27 28		Very dense, grey, Silt, with a trace of clay.	116.33				Cement grout with 4 lbs. of bentonite powder per bag of cement	
8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		Limestone Light to medium grey, very fine to medium ocarse crystalline, fossiliferous ilmestone, generally medium bedded (15-25 cm), with thin, often ondulatory shale partings common between beds, and occasional calcite stringers (Rebeween Semation, Lower				6		1 E-06
36 - 11 37 -		(Bobcaypeon Formation, Lower Member)				4	ļ	
38 aina 39 aina 40 ang		- 9.4-9.7m weathered broken shale seams	112.22			3		4 E-10
Drill Hole	Metho Size:	Downing Drilling Datum: d: Diamond drilling HW 4.5"(114mm)/HQ3 3.78(96mm Nov. 24, 2003 Sh		12			Better Environment For Business	

Well ID: W60-1

Project: Hydrogeological Characterization

Client: Waste Management of Canada Corp.

Location: Ottawa, Ontario

Log File: B2653w60-1 Tem. File: B2653br Field Personnel: B.A.

	S	UBSURFACE PROFILE		E	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation	Fracture Frequency/ Run	Comments	K (m/sec)
1 4444748905553555		- 13.7-14.2 totally healed, re-cemented with calcite vertical fracture.	111.28			4	Cement grout with 4 lbs. of bentonite powder per bag of cement	10 E-09
1 55555555560 60102 11						2 4		9 E-10
63 64 65 66 67 68 67 68 69 69 69 69 69 69 69 69 69 69 69 69 69		- fracture	105.18			2	Bentonite gravel seal	2 E-07
70 71 72 73 74 75 76 77 76 77 77 77 76		 - 21.26-21.7m vertical fracture - 22.9-23.5m horiz. fracture above a vertical fracture with calcite mineralization. 	102.11			4	3.05m x 50mm slot 20 PVC screen within a 3M silica sand pack	1 E-07
78 - 24 79 - 14 80 - 14 81 - 14 82 - 14 83 - 14 83 - 14 83 - 14		End of Cored Hole	100.03			5	Bentonite gravel plug	
03 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				- - -				

Drilled By: Downing Drilling Datum: m.a.s.l. Drill Method: Diamond drilling Hole Size: HW 4.5"(114mm)/HQ3 3.78(96mm) Drill Date: Nov. 24, 2003 Sheet: 2 of 2

į

(

Well ID: W60-2

Project: Hydrogeological Characterization

Client: Waste Management of Canada Corp.

Location: Ottawa, Ontario

Field Personnel: B.McC. Log File: B2653w60-2 Template File: B2653soil

	S	UBSURFACE PROFILE			SA	MPI	E		
Depth	Elevation	Description	Symbol	Number	Type	N RGD %	% Recovery	Well Data	Comments
π.m -1 -	125.12	Ground Surface							
-1	125.12 124.92	Very loose, moist, organic soil		1	ss	4	63		s/u 0.53m TOC, 0.32m TPVC 150mm steel well casing with locking
3-1	400 75	(topsoil), with root fibers. Sand Very loose, medium brown, medium		2	ss	3	57		cap grouted to surface Elev. 125.65m TOC Elev. 125.44m TPVC
4 1 5 1 5 1	123.75 123.29	grained Sand, with a trace of gravel.		3	SS	>50	56		
01 2 7 1 2		Very dense, grey, wet, Sand, with some gravel.		4	ss	21	50		will data recorded Jan. 6, 2004
2 5 6 7 8 9 3 10 10		<i>Sility Sand</i> Medium dense, grey, wet, fine grained sility Sand.	HIH.	5	ss	23	100		
10 3 11			HHH	6	ss	19	100		
13 4 14 4	121.16	Silt		7	SS	8	29		Bentonite skurry seal
15	120.24	Loose, gray, saturated, Sitt, with some fime gravel and a trace of sand.		8	SS	11	0		Dentonate prarty edas
		Sility Sand Till Very dense, grey, poorly graded, slity send Till, with gravel, cobbles and	S.	9	SS	>50	44		
19 20 - 6		boulders.					.100		
21	118.64	_		40	RC		100		
23 7 24		Silt		12	RU		100		Bentonite gravel seal above silica send pack
25 26 - 8		Very dense, grey, Silt, with e trace of clay.							
	116.43			13	RC		100		
27 28 29 30 31 32 33 34 34	114.33	Limestone Light to medium grey, very fine to medium coarse crystalline fossiliferous limestone (Bobcaygeon Formation, Lower Member).		14	RC		100		3.05m x 50mm slot 10 PVC screen within a 3M slitca sand pack
36 - 11		End of Cored Hole							
Drill N Hole S Datun	lethod: Size: 8 n: m.a.	owning Drilling : H.S.A./Diamond drilling "(200)/3.78"(96mm) s.I. s.I. ov. 19, 2003 Sheet: 1 d	of 1				Bet	er Brivit	MESA conment For Business

Well ID: W62-2

Project: Hydrogeological Characterization

Client: Waste Management of Canada Corp.

Location: Ottawaw, Ontario

Field Personnel: B. McC. Log File: B2663w62-2 Template File: B2653soil

	SI	JBSURFACE PROFILE			SA	MPL	Ē		
Depth	Elevation	Description	Symbol	Number	Type	N RGD %	% Recovery	Well Data	Comments
1 m	125.83	Ground Surface							
		٩		1	ss	15	75		s/u 0.69m TOC, 0.61m TPVC 150mm steel well casing with locking
2 1 34 1		S and Medium dense to dense, wet, brown,		2	ss	15	50		cep grouted at surface. Elev. 128.49m TOC Elev. 128.41m TPVC
4 5 5		fine to medium grained Sand. Seturated sand at 6' (1.83m).		3	ss	40	83		w/l data recorded Jan. 7, 2004
1 2 3 4 5 6 7 8 9 0	123.39			4	ss	58	83		
8 1 94	123.30	Sand (Sand) Very dense, brown, saturated, medium to coarse grained Sand.		5	SS	>50	75		
		to coarse grained Sand.		6	SS	>50	67		
11 - 12 - 1 13 - 4	122.17	Sand		7	SS	>50	100		Native soll collaspe
ha ==	121.26	Sand Sand Sand.		8	55	42	75		
16 17 18 19 20 21 20		Sandy Silt Dense, grey, wet, fine grained sandy Silt, to silty Sand.			33	42	2		Bentonite gravel seal
22- 23-1-7	119.12	Silt and Sand		9	SS	>50	31		
24	<u>118.51</u> 117.55	Very dense, grey, Silt and Sand, with gravel and cobbles. Sand Till Till and boulders.		10	RC				
28록		Limestone		11	RC				
31		Light to medium grey, very fine to medium coarse crystalline fossiliferous limestone(Bobcaygeon Formation, Lower Member)		12	RĊ				3.05m x 50mm slot 10 PVC screen within a 3M silica sand pack
32] 33] 10	115.57								
34] 35]		End of Cored Hole							
Drill N Hole (Datún	Aethod: Size: 8' n: m.a.	owning Drilling H.S.A./Dlamond drilling (200mm)/3.78"(96mm) s.l. ov. 26, 2003 Sheet: 1 d	of 1				A Bet	Envir	VESA onment For Business

1

Well ID: W63

Project: Hydrogeological Characterization

Client: Waste Management of Canada Corp.

Location: Ottawa, Ontario

Field Personnel: B.McC. Log File: B2653w63 Template File: B2653soli

	SI	JBSURFACE PROFILE			SA	MPL	E		
Depth	Elevation	Description	Symbol	Number	Type	N RGD %	% Recovery	Well Data	Comments
-1-1	124. 9 1	Ground Surface							
1 <u>4</u>	124.61	Silty Sand	HIHH	1	SS	18	58		s/u 0.48m TPVC Elev. 125.39m TPVC
1 1 2 3 1 1 1		Sand Very dense, brown, wet to saturated 5		2	SS	55	88		
4북 5급		thinly bedded, medium grained Sand.		3	88	46	50		wil data recorded Jan. 7, 2004
6 7 2	122.78			4	88	79	50		
103		\mathbf{G}		5	SS	>50	67		
10 - 3 11 - 3			HHR	6	S 8	19	67		
12 13 13 4			Hill	7	ss	17	58		Bentonite sturry seal
14 15			11.HH		RC				
16 5					ss		0		
17		Silty Sand Till Medium dense to very dense, molet to	UHU	9 10	55	7 >50	0 45		
19 20 - 6		Medium dense to very dense, moist to wet, grey, silty Sand Till, with trace gravel and boulders.Saturated soil at 7.3m (24').	A.NH						
21		7.3m (24').	Hill	11 12	SS SS	41 >50	17 0		
23 1 7 24 1 7 25 1			NHM		[Bentonite gravel seal above silica sand
25북 26북 A				13	SS	7	75		peck
26 1 8 27 1 8 28 1	ļ		(HIII)	14	\$ S	46	42		
28-11 29-11-9 30-11-9									,
	444.00		HIHH	15	RC				
9 10 1 9 10 1 1 2 3 4 5 6 7 8 9 10 11 1 1 2 1 3 4 5 6 7 8 9 10 11 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 5 6 3 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	114.96	Limestone (8)		16	RC				3.05m x 50mm slot 10 PVC screen within a 3M silica sand pack
35		Light to medium grey, very fine to medium coarse crystalline fossiliferous		17	RC				
36章 11 37章		Imestone (Bobcaygeon Formation, Lower Member).		10	RC				
38	113.00				~				
40		End of Cored Hole							
Drill	Method	owning Drilling : H.S.A./Diamond drilling *(200mm)/ 3.78*(96mm)							VESA
Datu	m: m.a.		of 1				A Re	ter Emvi	conment For Business

Well ID: W64

Project: Hydrogeological Characterization

Client: Waste Management of Canada Corp.

Location: Ottawa, Ontarlo

Field Personnel: B.McC. Log File: B2653w64 Template File: B2653soil

		S	UBSURFACE PROFILE			SA	MPL			
Depth		Elevation	Description	Symbol	Number	Type	N/ RGD %	% Recovery	Well Data	Comments
-2-1- -1-		125.54	Ground Surface	122373						
0 1 1 2 3 4 4		124.63	Medium dense, brown, thinly bedded, medium grained Sand.		1	SS	19	58 63		s/u 0.80m TOC, 0.73m TPVC 150mm steel well casing with locking cap grouted at surface Elev. 126.27m TOC Elev. 126.34m TPVC
3 4 5 5	1		Sand Very dense, brown, dry, coarse grained Sand, with a trace of gravel.		2 3	SS SS	>50 >50	55		129.44 wildats recorded on Jan. 7, 2004
6	2	123.41	Sand (C)		4	ss	72	63		
8 9 10 10	3		Very dense, brown, dry, thinly bedded, medium grained Sand. Molstsoil encountered at 3.35m (11').		5	ss	76	58		Bentonite slurry seal
11 11 12 11		121.88	Sand (5)		6	SS	40	58		Bentonite gravel seal
13- 14-1 15-1	4		Very dense, brown, saturated, thinly bedded, fine to medium grained Sand.		7 8	SS SS	75 >50	58 63		
17	5	120. <u>66</u>	Sand Very dense, brown, saturated fine grained Sand, with a trace of gravel.		9	SS	>50	47		110 61
18-1 19-1	6	119.65	Limestone (2)							3.05m x 50mm slot 10 PVC screen
20-1 21-1 22-1 23-1	7		Light to medium grey, very fine to medium coarse crystalline fossiliferous ilmestone (Bobcaygeon Formation, Lower Member).		10	RC				within a 3M silica sand pack
24		117.82								
	8		End of Cored Hole						,	
Dri Ho Da	ii N le : tur	Aethod: Size: 8 n: m.a.	owning Drilling : H.S.A./Diamond drilling "(200mm)/3.78"(96mm) s.l. ov. 25, 2003 Sheet: 1	of 1				A Bet	E Envir	VESA onment For Business

Well ID: W65-2

Project: Hydrogeological Characterization

Client: Waste Management of Canada Corp.

Location: Ottawa, Ontario

÷

£

Field Personnel: B.McC. Log File: B2653w65-2 Template File: B2653soil

		SI	JBSURFACE PROFILE				SA	MPI	.E			
Depth		Elevation	Description	Sumbol	oy more	Number	Type	N RGD %	% Recovery		Well Data	Comments
π.m -1-1		126.75	Ground Surface			-						
-1- 0			sin 🔍			1	SS	36	17			s/u 0.43m TPVC Elev. 127,18m TPVC
2 3 3 4 4	1		Dense to very dense, dry, Silt with boulders and sand lenses.	H		2	SS	13	54			
4 <u>4</u> 5월		124.92				3	ss	73	54			
	2 [(5)			4	ss	50	50			Bentonite slurry seal
81 91		J	S			5	ss	29	54			
10 - 3 11 - 3	1					6	SS	41	58			
12章 13章 4	ł					7	SS	45	54			
14급 15급					·	6	SS	34	58			
16ま5 17手5	5		Sand Dense to very dense, brown, damp to			9	ss	45	63			
18콜 19콜		ļ	dry, coarse grained Sand with a trace of fine to coarse gravel.			10	SS	35	58			
20월 0 21를	1					11	SS	>50	33			
22- 23 手 7	,					12	SS	55	75			
24- 25- 25-						13	SS	>50	47			Bentonite gravel seal above native soil collaspe
26루 8 27 분 8	4					14	SS	95	39			
28書 29号,		17.61			ſ						į.	
30事 ⁹ 31루	F	37.01				15	SS	>50	56			
32 - 1	ł		Sand and Gravel			16	SS	>50	33		Ĭ	w/i data recorded on Jan. 7, 2004
34			Very dense, damp, brown, coarse grained sand and coarse gravel. Saturated solt 10.36m (34).			17	SS	>50				
36 - 1	1		Salurated Son TU. Jom (34).		•				-100-			
5 6 7 8 9 0 11 12 13 14 15 6 17 18 19 0 12 22 32 42 52 62 7 8 9 0 3 32 33 4 55 63 7 89 0 1 1 12 13 14 15 6 17 18 19 0 12 22 32 4 52 62 7 8 9 0 3 3 23 3 4 55 63 7 89 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ŀ	14.91	71				70					3.05m x 50mm slot 10 PVC screen with a 3M silica sand pack
	1		Limestone (Bobcaygeon Formation, Lower		甘							
	31	13.57	Member).		E	20	RC					
	İ		End of Cored Hole									
Drill Hole Datu	M S S	lethod; Size: 8' n: m.a.:	owning Drilling H.S.A./Diamond Drilling (200mm)/3.76*(96mm) s.I. ov. 24, 25, 2003 Sheet: 1	of 1					A Bet	ter	Env	NESA ronment For Business

Well ID: W72

Project: Hydrogeological Characterization

Client: Waste Management of Canada Corp.

Location: Ottawa, Ontario

Field Personnel: D.R. Log File: B2653w72 Template File: B2653soll

	S	JBSURFACE PROFILE			SA	MPL	E		_
Depth	Elevation	Description	Symbol	Number	Type	N RGD %	% Recovery	Well Data	Comments
ե է Դ Հ Հ Դուրուրու	130.57	Ground Surface							
1 1		A		1	ss	21	75		s/u 1.14m TOC, 1.07m TPVC 150mm steel well casing with locking cap grouted to surface Elev. 131.71m TOCI. Elev. 131.64m TPVC
1111 2111		-		2	SS	19	29		cap grouted to surface Elev. 131.71m TOCI. Elev. 131.64m TPVC
3 - 1 4 - 1		Sand and Grave! Medium dense to very dense, light to dark brown, moist, bedded, stratified,				19	28		
3 4 5 6 1 2		dark brown, moist, bedded, stratified, sand and gravel with slit and trace clay.		3	SS	40	38		
7 2				4	ss	55	67		
7			Óđ	5	SS	>50	25		
	127.47			6	SS	28	46		
11 <u>-</u> 12 <u>-</u>		Ð		-	33	20			
13 4 14 4		Gravel Dense to very dense, medium brown, dry, fine to coarse gravel.		7	SS	65	50		
15				8	SS	>50	42		
16-1-5 17-1-5	125.39			9	SS	>50	78		
18		Sand Very dense, light brown to grey, dry to moist, fine to medium grained sand with trace of gravel.		_			0		
19 20 - 6		with trace of gravel.							
21				11	88	72	75		Bentonite slurry seal
22-1 23-1-7									
24 - 1 25 - 1			va Seit	+	=		-0		
26 8				_					
27 -				14	SS	89	71		
		owning Drilling	10054			1			
Drill N	tethod:	H.S.A./Diamond drilling						41	VESA
	5 ize: 8' n: m.a.:	"(200mm)/3.78"(96mm) s.i.							
		ec. 1,2, 2003 Sheet: 1 o	f 2				A Bet	ter Envir	onment For Business

(

ł

Well ID: W72

Project: Hydrogeological Characterization

Client: Waste Management of Canada Corp.

Location: Ottawa, Ontario

Field Personnel: D.R. Log File: B2653w72 Template File: B2653soil

į

	S	UBSURFACE PROFILE		Τ	SA	MPL	.E		
Depth	Elevation	Description	Symbol	Number	Type	N RGD %	% Recovery	Well Data	Comments
29] 。				15	ss	88	75		····
30 - 1 ° 31 - 1				10	\$ 8	>50	75		Bentonite slurry seaf
32-1 33-1-10	}			17	ss	95	63		
34- 35-				18	55	>50	43		
36 1 1 37 -	119.60		20	19	SS	>50	87		
38- 39- 1-		Gravel		20	SS	>50	91		
#0를 []		Very dense, moist, greyish-brown, fine to medium grained Gravel, with some sand.	00				-68		
41	285			22	SS	>50	67		117:72 with data recorded Jan. 7, 2004
43 1 13 44 1	117.16								Bentonite gravel seal above silica sand
45 - 46 - 14		(*)	Ó	23	SS	90	78		pack
47	101,20	Sand and Gravel Very dense, dark gray-brown, wet to saturated, coarse Sand and medium to		24	SS	>50	87		11637
49 15		coarse Gravel, with a trace of allt.			•				
50-1 51-1	115.00	Limestone (a	मिल्लस	25 26		>50	100		
52		Limestone Light to medium grey, very fine to medium coarse crystalline limestone, generally medium bedded (15-25 cm).		27	RC				3.05m x 50mm slot 10 PVC screen within a 3M silica sand pack
54-1 55-1		with thin, often ondulatory shale partings common between beds, and		28	RC				
56 17 57 17	25	occasional calcite stringers (Bobcaygeon Formation, Lower Member)		29	RC				113,32
58 <u></u>	12.89	End of Cored Hole	豊富						
69 - 18 60 - 1									
Drill M Hole S Daturr	lethod: Size: 8' n: m.a.s	owning Drilling H.S.A./Diamond drilling "(200mm)/3.78"(96mm) s.t. sc. 1,2, 2003 Sheet: 2 d	of 2		-	ĺ	Bett	J V ter Envir	VESA onment For Business

Project No: C-B4853-06-02

Project: WM Ottawa Landfili - Expansion Drilling

Client: Waste Management

Location: WM (former Mulligan property)

Well ID: W73-2

Easting: 346287.93 Northing: \$016542.84 Fleid Personnel: 8. Pfister

	\$	UBSURFACE PROFILE		8	Rock			
Depth	Stratigraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequencw/Run	Comments	K (m/sec)
#		Ground Systeme	120,74				Elevation of TOC = 121.05 milli	
1 2 3 4 5 6 7 8 1 9 9 0		topeol/ molist, dark brown, loose with abundant organics eand/grave/ molist, brown, loose alty molist, brown, soft with irace alt grave/ molist, brown, loose with orushied rook fragmentia	120.13				bentonita gravel	
11 12 19 14		sand/gravel molet, brown, loose abunidant cobblee and broken boulder fragments eand/gravel wet, brown, loose	118,47				WL-Apr.23/07 (117.25 maal)	
Driked Dyti My	By: Do athoct I up: 16/	HS sugerAtlamond core Ch Mar/2007 Wi	eoked By	: FLC mptale: WM	y (by OL3) (JTN verticalhole	NAD	A Better Environmeal For B	

(

Project No: C-B4853-08-02

Project: WM Ottawa Landfill - Expansion Drilling

Client: Waste Management

()

Location: WM (former Mulligan property)

Easting: 346287.93 Northing: 5018542.84

Field Personnel: S, Plister

	5	UBSURFACE PROFILE	1	S	Rock		5	
Depth	Strattgraphy	Description	Elevation (m)	Well Construction	Quality Designation % 20 60	Fracture Frequencu/Blun	Commenta	K (m/sec)
8 1 1 1 1 5 7		sand wat, brown, danse, well graded with some pravel near base	115.86				running sand	
יון ווייי מיוידין ווייי		und collec Carol Lifet conc	114.64	at a state of the				
· <u>· · · · · · · · · · · · · · · · · · </u>		sanckgravel wet, brown, very dense with graval and rock fragmants				Ē		
		fractured bedrock	119.42					
┙┥╌╴┝╷┶┙┥┶┶┝┶┶┝┶ ╈		Linisettone-Balicaygeon Fin light to dark grey, microcrystalline to medium grahved, thin to medium beddet, fossilliptus and bioturbaleo limestake with him to on-thick usdutatory/planer/inregular shale partinge. • 8.23 to 8.43 mbgs - vertical	5	and a structure of the	• .	10	3.05m x 60mm PVC ecreen within silica sand	
יין איז		joints at 9.1, 9.17, and 9.32 mbgs: horiz, dv. nahow, not healed, clean, smooth, dry. End of Borehole	<u>111.75</u> 		•	3		
1 10 10		9.5m below ground surface, hole terminaled in bedrock						
Drilled I Drilled Me	thod: H	NS auger/diamond care Mar/2007	Dâturi: ATK Gheoked By: WinLOG Ter Sheet: 2 of 2	; FILC mplatis: WM	y (by CLS) UTI verticalhole	MNAD	A Better Burvironment For	SA Business

Well ID: W75

Project No: C-B4853-06-02

ł

Project: WM Ottawa Landfill - Expansion Drilling

Client: Waste Management

Location: Paul's Farm (East of William Mooney)

Easting: 345843.62*

Northing: 5015992.95*

Field Personnel: S. Pfister/A. Wigston

SUBSURFACE PROFILE Rack Well Construction Fracture Frequency/Run Quality Designation Elevation (m) Strattgrephy (jun/980c) Comments Description Depth ٩. 20 60 ¥ 4 TOC Elevation = 124.62 masi .2 -1 **Ground Sufface** 123.71 sand moist, brown, medium grained 上のの fine sand 1 2-WL - Apr. 23/07 (122.91 maei) 5 4 wet grey, silty, fine grained 8 121.64 7 siity sand Wet, grey 121.38 bentonite gravel Ð sand wet, grey, very dense, fine, with sitt and gravel 120.87 spoon refuse), sugered through oclubies 120.72 10 sand 11 wet, grey, very dense, fitte, with alit and gravel 120.26 120.11 12spoon refusal, supered through copples 13 sand war, grey, dense, fine, with some medium brown, some iron stained nodulee, some silt and grävel 14 15-Orlited By: Downing Orliting Datum: * RTK GPS Survey (by OLS) UTM NAD27 Checked By: FILC Drill Method: HS auger/diamond core Drll) Dets: 217Mar/2007

Hole Bizer 8"/HQ

WinLOG Template: WMverticalhole

Sheet: 1 of 2

Project, No: C-B4853-06-02

Project: WM Ottawa Landfill - Expansion Drilling

Client: Waste Management

Location: Paul's Farm (East of William Mooney)

Well ID: W75

Easting: 345843.62*

Northing: 5015992.98*

Field Personnel: S. Pfister/A. Wigston

	S	UBSURFACE PROFILE		5		lock	1		
Depth	Stratignaphy	Description	Elevation (m)	Well Construction	Desi	uality gnation 560	Fracture Frectiency/Run	Comments	K (m/sec)
			118.59						
	\square	spoon refusal, augèred through - cobbles	118.28		ľ		[
		send/grave/ wet, grey, danse, tine, with some coalse sand and fine gravel	117.98						
1. 8	<u>,</u>	speen refutesi, augered through cobbles	117.67						
이 아이가 같		sandigravel wat, grey, dense, fine to boarse grained sand and gravel	117.87		ļ.				
		spoon refuset, augered through cobbles	117.08			Í			
-1		aand/gravel wet, grey, denst, fine to obave grained sand and gravel	116.45						
		spoon réfusal, augared through cobblet	116.23						
		sandigravel wel, grey, dense, fine to coarse grained sand and gravel	115,92			ļ		3.05m x 50mm sipt PVC screen within a slice sand pack	
8		gravel				•	+		
		Limestone Boliceygeon Fin light to dark grey, microcrystalline to medium grained, thin to medium bedded, fobeliferous and bioturbated imestone with mm to cre-thick				ļ			
7 - 7 - 7		undulatony/planar/irragular shala partinys.				•	7		
		End of Borehole 9.5m below ground surface, hole ferminated in bedrock	114.26						
		,					,		
	•	• =		K GP8 Surv	ney (by	ols) ut	M NA		
		•	icked By: 1LOG Te:	: HLC mplate: WM	vertical	hola		WES	
	ize; 8"/		ent: 2 of 2	•				A Better Environment For But	iness

Project No: C-B4853-06-02

Project: WM Ottawa Landfili - Expansion Dritiling

Client: Waste Management

(

ł

Location: Paul's Farm (Next to William Mooney Dr)

Well ID: W76-2

· - - -

Easting: 346287.93*

Northing: 5019784.87*

Fletd Personnel: S. Pfister/A. Wigston

	S	UBSURFACE PROFILE		8	Rock			
Depth	Stratigraphy	Description	Elevetion (m)	Well Construction	Quàlity Designation Secondo de la companya de la co	Fracture Frequency/Run:	Comments	K (m/æc)
		Ground Surface	123.50				1'OC Elevation = 124,47 maai*	
8 - 0 1 - 1 2 - 1 3 - 1 4 - 1 5 - 1 5 - 1 8		Topsolf eand web, brown, increasingly grey with depth, unitorm fine grained, iron staining at the top, some gravel increasing with depth molist web, grey, fine, silty sand spoon natusal, augered through cobbles	123.26 121.37 121.06		· ·		WL - Apr. 23/07 (122.47 meel) bentanite gravel	
9 10 10 11 12 18 14 14		seind malit, grey, dansé, liné, with somè sit and gravel, augered through obbles apoin refusa), augered through obbles aend/gravel molet, gray, campaci, line gravely sand wet, dense, gräded to well grade gravely sand with depth			ey (by OLS) UT	TM NAI	3.05m x 50mm stot PVC screen within a ethoa send psok	
	te: 22/	Mar/2007 W	hecked By InLOG`Te heet: 1 of 2	nplate: With	verticalitole		A Better Environment For Bu	-

Project No: C-B4853-06-02

Well ID: W76-2

Project: WM Ottawa Landfill - Expansion Drilling

Client: Waste Management

C

f

Location: Paul's Farm (Next to William Mooney Dr)

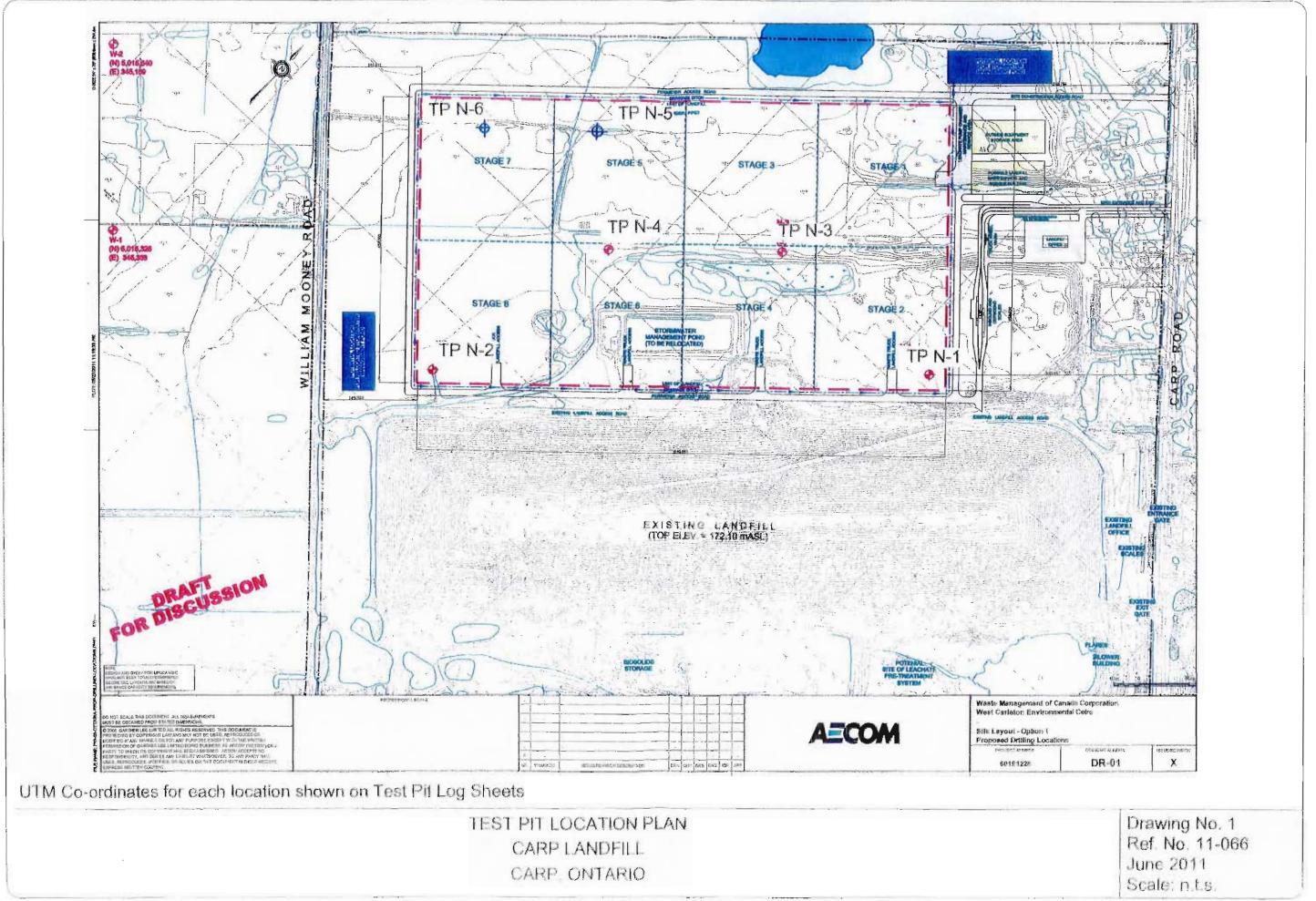
Easting: 346287.93*

Northing: 5015784.87*

Field Personnel; S. Pfister/A. Wigston

	8	UBSURFACE PROFILE		5		Rock			
Depth	Stratigrapfry	Description	Elevetion (m)	Well Construction	Des	y 96 90	Fracture Frequency/Run	Commente	K (indsec)
יאיואייואין יואייואין איואין איויאין איאיאיאיאיאיאיאיאיאין איאיאין איאיאין איאיאין איאיאין איאיאין איאיאין איא איאיאיאיאיאיאיאיאיאיאיאיאיאיאיאיאיא		Linestone-Bobcaygeon Fin light to dark gray, microsrystalline to coarse grained, thin to rectium bedded, toskillicous and bloturbate linestone with abundant mm-thick undulatory or discontinuous shale partings: -6.17 to 6.45 mbgs - vertical joint: ex to vely nárrow, not heated, clean, rough and planar, dry. End of Borehote 6.88m below ground surface, holę terminated in bedrock					16	3.05m x 80mm sibt PVC schen within a silice sand peck	
Dy s i Ma	ithod: H tp: 22/1	is auger/diamond core Mar/2007	Detum: * RTT Checked By: WinLOG Ten Sheet: 2 of 2	RLC nplate: WM			'M NAC	A Better Environment For Bu	A

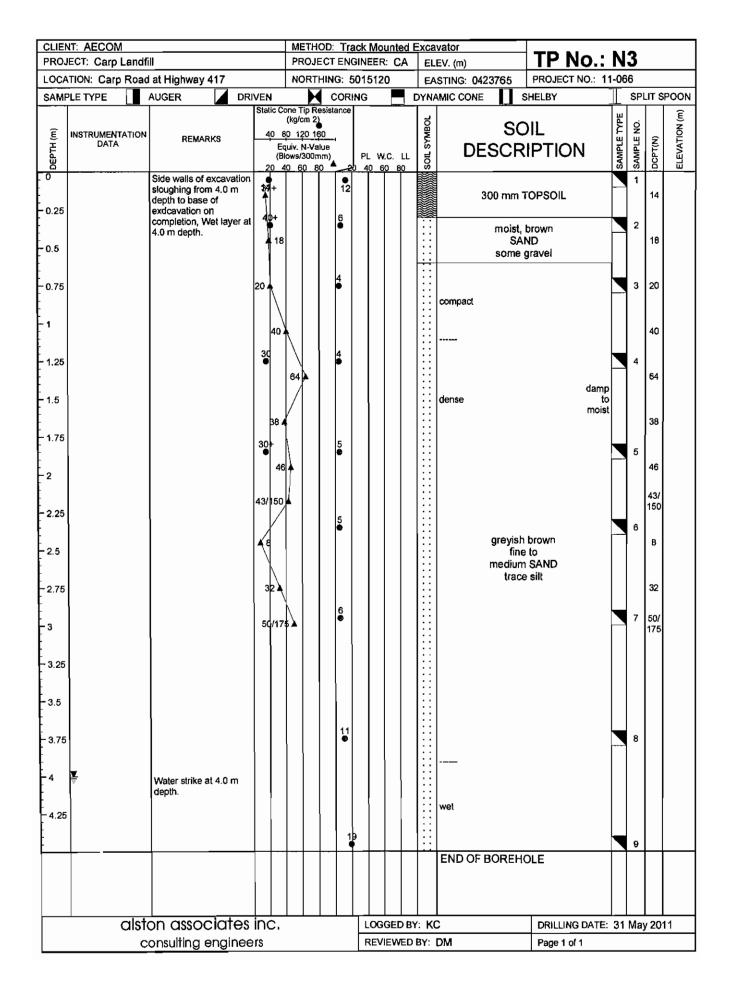
FIGURE:		RECORD OF TEST HOLE		DESIGNATION 979	AUGUST	12, 199	7 E 33
PROJEC	7: L	AIDLAW WASTE SYSTEMS, CARP	DRILLING	METHODS: HOLLOW STEM SOR: BRIAN ANDRES			
ROJEC	T NO.: 2	849-R	DRILLING	CONTRACTOR: NARATHON DR	SLUNG CO. LTD.	T	
DEPTH	ELEVATION METRES	STRATIGRAPHY	100	INSTRUMENTATION	TYPE	INTERVAL.	N VALUI
0	128.11			0.58 STICK	(UP		
- 0.5	125.75	MEDIUM BROWN, MOIST, TOPSOIL FILL 0.36 GREY, MOIST, SILTY SAND WITH GRAVEL AND BOULDERS		NATIV 			
- - 1.0 -				0.79 1.24	ONITE		
- 1.5	124.59		\mathcal{D}^{-1}		\$51		31
<u>~</u> 2.0		COMPACT TO DENSE, GREY, WET, SILT AND FINE SAND WITH A TRACE OF GRAVEL		1.82		21	
- 2.5							
- 3.0 -	123.06	3.05 LODSE, GREY, SATURATED SAND AND GRAVEL TILL, TRACE OF CLAY	9.19	.038 SLOT	g PVC 10 \$\$2		4
- 3.5 -	122.55			3.56m		3.56 	
- 4.0							
- 4.5							
-							
1				WATER AND EABTH	SCIENCE ASSOCIA		

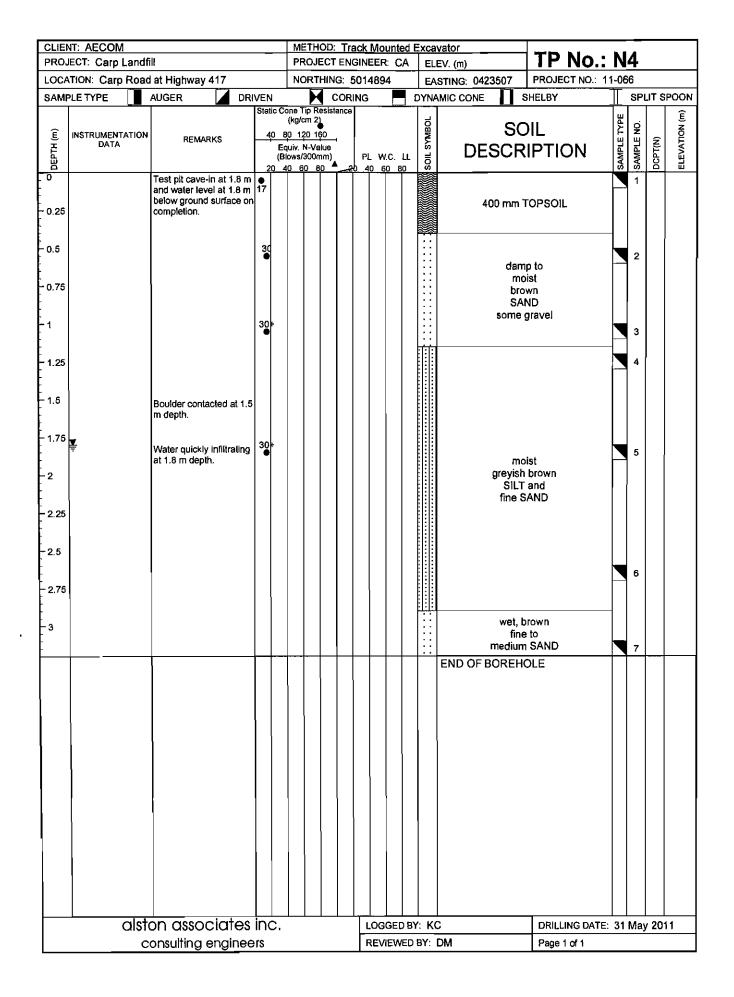

1

) |

۰.

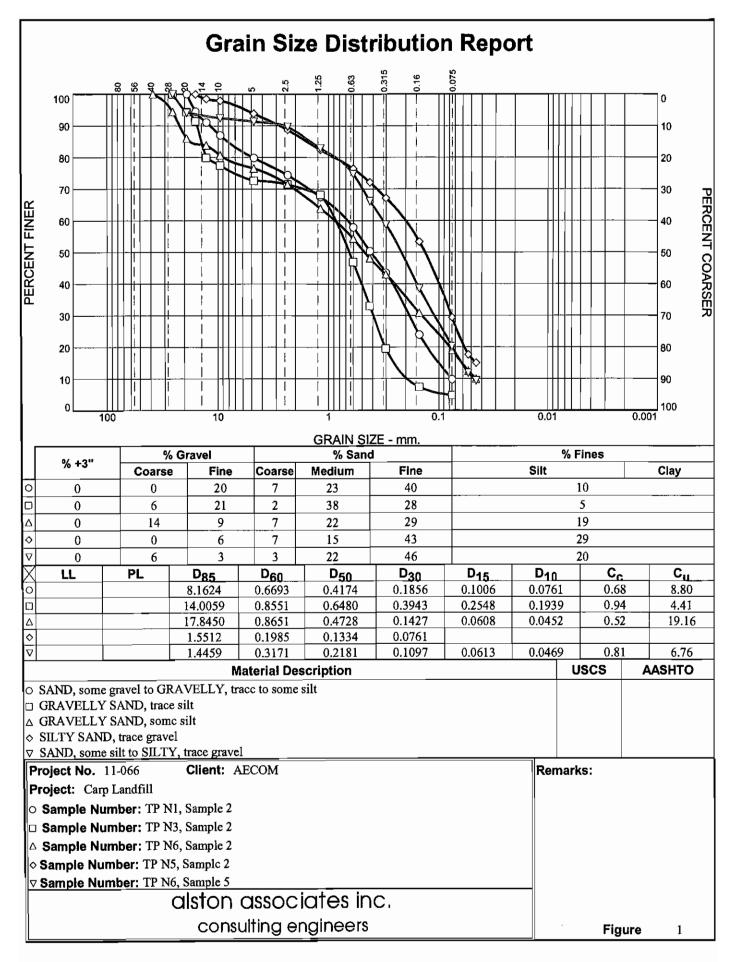
FIGURE:		RECORD OF TEST HOLE		P80		12, 19	
PROJEC		AIDLAW WASTE SYSTEMS, CARP	SUPERV	3 METHODS: HOLLOW STEM ISOR; BRWN ANDRES	\$		
PROJEC	T NO.: 2	849-R	ORILLIN	G CONTRACTOR: MARATHON DR	LUNG CO. 170.	T	(
depth Metres	ELEVATION METRES	STRATIGRAPHY	106	INSTRUMENTATION	TYPE	INTERVAL	N VALUE
0	128.22				UP		
	128.02	MEDIUM BROWN, MOIST,			CEMENT		
-	120.02	0.20	مزادم متند به رفتوسهم ا				
- 1.0		COMPACT, LIGHT BROWN, MOIST,		0.94	'6m		•
		FINE TO COARSE SAND	ية. مراجعة إ			1.50	
-					NATIVE		22
- 2.0						2.13	
-							
				2.74	łm		
- 3.0	125.17	3.05 DENSE, GREY, MOIST FINE SAND			BENTONITE SS		48
-		WITH A TRACE OF FINE GRAVEL				3.65	
- 4.0					יייע		
4.0					15m	4.57	(
•	123.65	4.5/			SILICA SS		27
- 5.0		COMPACT, GREY-LIGHT BROWN.				5.18	
_		SATURATED, FINE SAND WITH A TRACE OF GRAVEL					
			× • • •				
- 6.0	122.12	6.1			38 ¢ PC 07 10 SS4		47
-		DENSE, GREY-LIGHT BROWN,					
- 7.0		SATURATED FINE TO MEDIUM			m	\mathbf{F}	
			تو (مريشه) الماري مدينة ماري مدينة			7.62	
-					555		3
. 8.0	120.22			8.1	3m -	8.23	
-		LOOSE, GREY, SATURATED SAND AND GRAVEL TILL WITH A TRACE		8.53m v 8.5	im	+	
		OF CLAY	9.9		NATIVE		
- 9.0	119.08	END OF HOLE 9.14m -		.038 Ø PVC			
-		BEDROCK REFUSAL		SLOT 10		1	
- 10.0						\mathbf{F}	
				WATER AND EARTH	ECTENCE ASSOCI	ATTES LATEL	

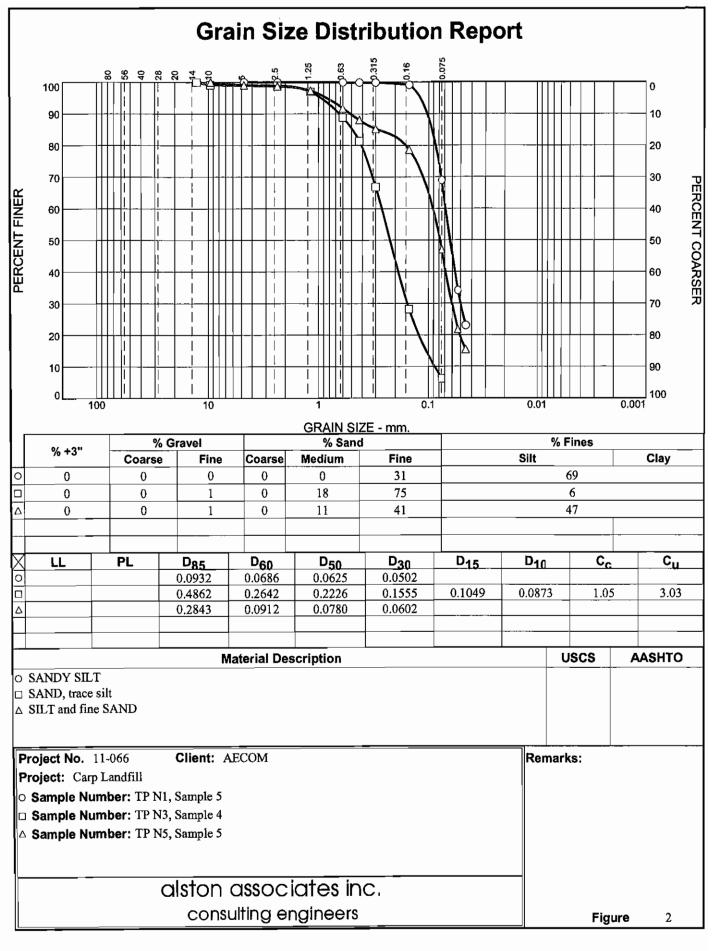

APPENDIX 'C'



	IT: AECOM ECT: Carp Landfi	I		METHOD PROJECT				/ator EV. (m)	TP No	.: N1		
LOCA	TION: Carp Road	at Highway 417		NORTHIN	IG: 5	015067	EA	STING: 042 <u>4059</u>	PROJECT NO.	: 11-066		
SAMP		AUGER 🛛 🖌 DRI	VEN		CORI	NG	DYNA		SHELBY	∏ s	PLIT	SPOOL
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 (B	one Tip Resist (kg/cm 2) 80 120 160 quiv. N-Value lows/300mm) 40 60 80	-	PL W.C.	SOIL SYMBOL		DIL RIPTION	SAMPLE TYPE	DCPT(N)	ELEVATION (m)
0		Test pit cave-in at 5.0 below ground surface on completion.			• 14		\bigotimes		,		1	
0.5			30		13 •		\bigotimes		, brown nd gravel		2	
0.75							\bigotimes	trace to	some silt BLE FILL)			
· 1 · 1.25			10		11 ●		\bigotimes				3	
• 1.5		Slow water infiltration in to test pit at 1.9 to 2.1 m depth.			8		\propto			4	1	
- 1.75 - 2					17							
- 2.25											5	
- 2 .5					2					•	3	
- 2.75 - 3					11 ●				oist GRAVE wet		7	
- 3.25								g SIL	rey T and SAND			
- 3.5												
- 3.75 - - 4					11						8	
- 4.25					14							
- 4.5					11 ●						9	
- 4.75 - -		on associates					Y. KC		DRILLING DA)11
1		onsulting enginee				REVIEN			Page 1 of 2			,

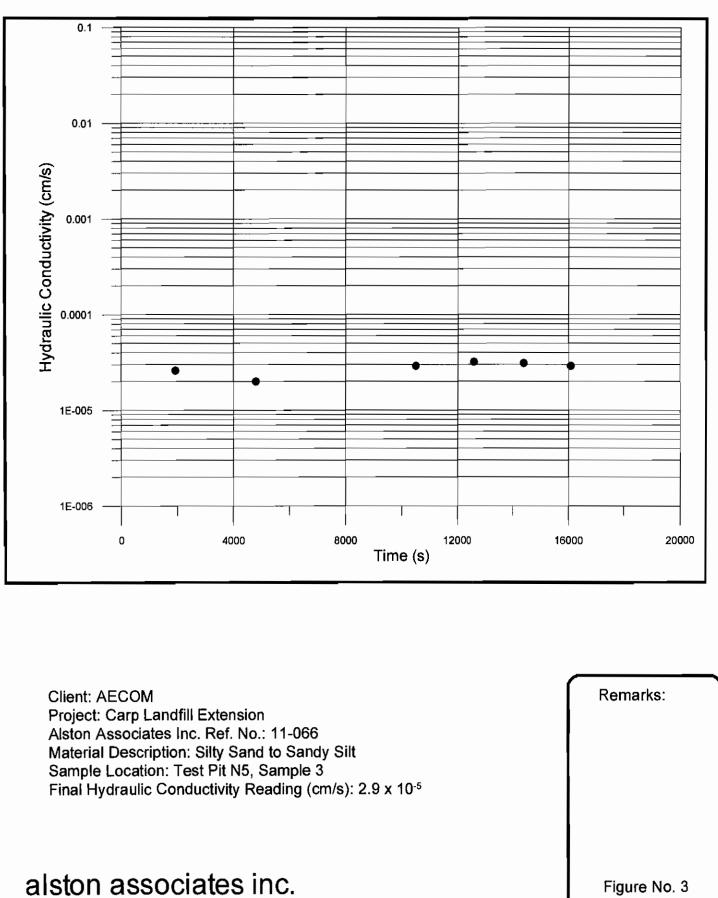
	NT: AECOM			METHOD: Track Mounted Excavator PROJECT ENGINEER: CA ELEV. (m) TP No.: N															
	ECT: Carp Landf			F	ROJ	ECT	EN	GIN	EEF	t: C	A	EL	EV. (m)	TP No.:					
	TION: Carp Road			N	IORT	_				7			STING: 0424059	PROJECT NO.: 1	1-06				
SAM		AUGER DR	VEN	_			OR		i		1	DYNA		HELBY	L	SPL	LIT S	POON	
			Static	Cone (kg	Tip R /cm_2	lesist !)	ance			•		Ы			ų			ÉLÉVATION (m)	
Ê	INSTRUMENTATION DATA	REMARKS		80	120 1	<u>60</u>	•					MB	SO			Р ИО́	î	TION	
DEPTH (m)	DATA			Equiv (Blow	N-V 3001	alue mm)		PI	LW	I.C.	u	SOIL SYMBOL	DESCR	IPTION	SAMPLE TYPE	SAMPLE	DCPT(N)	EVA	
-			20_	40	<u>60 (</u>	30	~	<u>b 4</u>	10 <u>.</u> 6	80 <u>8</u>	0	ы ППП			Ø	ŝ	ă	<u>.</u>	
-5		Side walls caving at 5.0					9						see bottom of p	previous page		10			
		m depth.											END OF BOREHO	DLE					
{																			
	1																		
1			1																
1																			
	1																		
{	l																		
{																			
									Į										
	alst	on associates	Inc					L	.0G	GEC) BY	: K	0	DRILLING DATE:	31	May	y 20'	11	
		onsulting enginee						F	REV	IEW	ED	BY:	DM	Page 2 of 2					

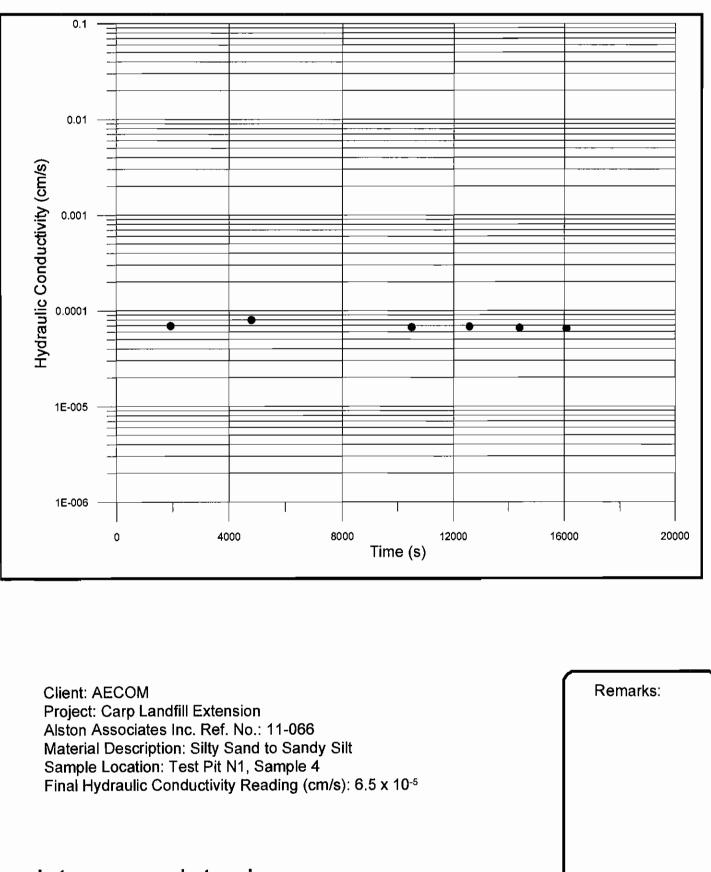

	NT: AECOM				HOD: T				_		TONA	NI	~		
PRO.	JECT: Carp Land	fill		PRO	JECT E	NGIN	EER:	CA	EL	EV. (m)	TP No.:	N	2		
LOC	TION: Carp Roa	d at Highway 417		NOR	THING:				EA	STING: 0423450	PROJECT NO.: 1	1-066	6		
SAM	PLE TYPE	AUGER 🛛 🖌 DR	IVEN			RING			DYN		SHELBY	I	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATIO	N REMARKS	40 E	Cone Tip (kg/cm 80 120 Equiv. N-V Blows/30 40 60	160 Value 0mm)	P	L W.C		SOIL SYMBOL)IL IPTION	SAMPLE TYPE	SAMPLE NO.	DCPT(N)	ELEVATION (m)
0		Water level at 1.2 m and side walls of excavation		40 80	Î					200 mm ⁻	TOPSOIL		1		
- 0.25		sloughing from 1.2 m depth to base of exdcavation on completion.	15 •						20073	SAND and	brown I GRAVEL e silt		2		
- 0.5 - - 0. 75			30+						, q	moist			3		
- - - - - -									· · · · · · · · · · · · · · · · · · ·						
- - 1.25	Ţ	Fast water infiltration in 1	3								wn		4		
- - 1.5		to test pit at 1.2 m depth Dynamic Cone penetration test advanced from 1.4 to 2.4 m depth.								fine medium trace trace	sAND gravel				
- - 1.75 -		2.4 10 06201.							· · · · · · · ·	wet	compac		5	17	
- 2			29						· · · · · · · ·		dense	-		29 36/	
				▲ 36/17	5				::					175	
		Refusal to advancement of dynamic cone test, probable boulder.								END OF BOREH					
		ton associates				-			IY: K		DRILLING DATE:	31	May	201	1
	(consulting enginee	ers			F	REVIE	EWED) BY:	DM	Page 1 of 1				



	NT: <u>AECOM</u> IECT: Carp Landfi				IOD: R						EV. (m)		TP No.:	N	5		
LOCA	TION: Carp Road	at Highway 417		NORT	THING:	501	500	6		EA	STING: 042337	76	PROJECT NO .: 1				
SAMP		AUGER 🛛 🖉 DRI'	VEN		COF	RING	3		D	YNA	MIC CONE	זו	SHELBY	Т	SPI		POON
DEPTH (m)		REMARKS	40 8 Ec (Bi	one Tip F (kg/cm 2 0 120 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60 alue mm)	 P		C. LI	L	SOIL SYMBOL		SC CR)il Iption	SAMPLE TYPE	SAMPLE NO.	DCPT(N)	ELEVATION (m)
0		Test pit side wallts cave- in at 1.2 m below ground surface on completion.	6 7			23					500 (mm 1	TOPSOIL		1	6 7	
0.5 0.75	¥.	DCPT rods wet at 0.8 m depth.	16 27 15			23			- I		SANE), soi	ist, brown me gravel some silt		2 3	15	
· 1			21		11										4	21	
· 1.5			25 A 27 A									mo to v brov SILT	vet wn			25 27	
· 1.75 · 2			32			в						ine S	AND		5	32	
• 2.25		Very slow water infiltration at 2.4 m r		61		21 0			1		dense				6	61	
		tepth.									END OF BOF						
						Ц.											4
		on associates l						GED E					DRILLING DATE	: 1 J	une	201	1
	CC	onsulting enginee	rs				REVI	EWE	DB	Y: [M		Page 1 of 1				

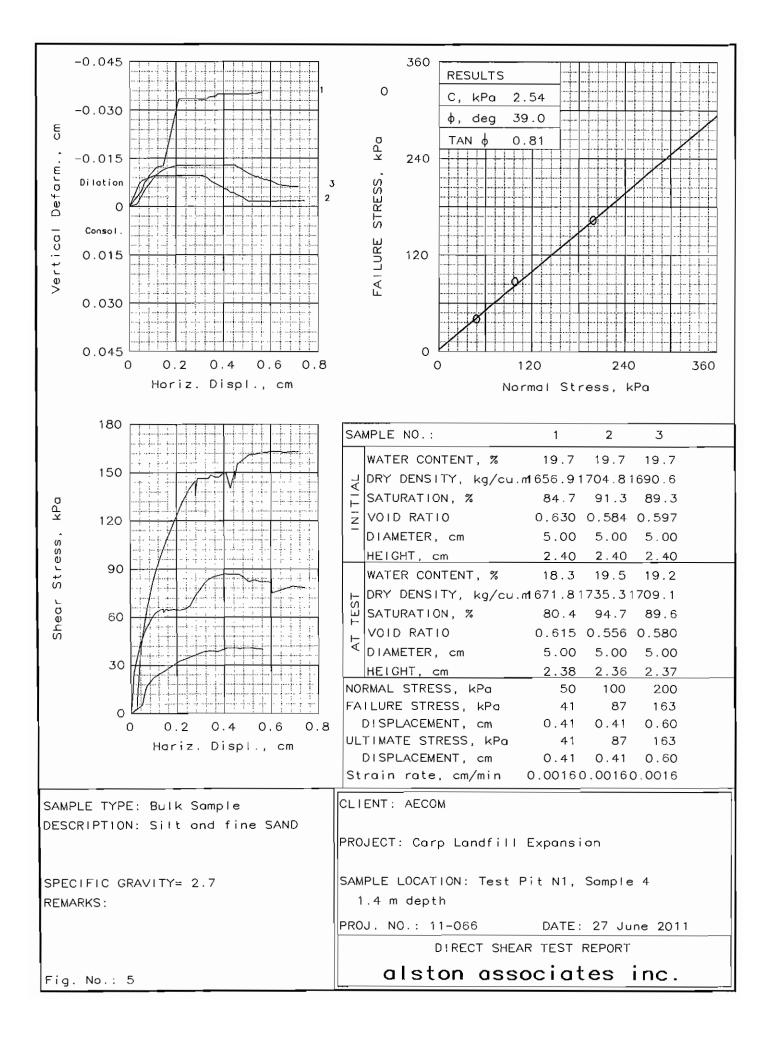
	NT: AECOM IECT: Carp Landfi				HOD: <u>Ri</u> JECT EN					EV. (m)	TP No.:	Ν	6		
LOCA	TION: Carp Road			<u> </u>	THING:	50149	917		EA	STING: 0423264	PROJECT NO .: '		6		
SAM		AUGER DRI	VEN					1	DYNA		HELBY		SPL	IT S	POO
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8 Ec (B	che Tip F (kg/cm 2 30 120 1 quiv. N-V lows/300 40 60	160 alue mm)	PL	W.C.		SOIL SYMBOL	SO DESCRI		SAMPLE TYPE	SAMPLE NO.	DCPT(N)	ELEVATION (m)
0		Test pit dry and open on completion.	5							200 mm T	OPSOIL		1		
0.25 0.5 0.75 1			30 + 30+							grey to l damp to SAN some some g	moist ID silt		2		
1.25 1.5 1.75 2 2.25										damp, SILTY f medium trace g	ine to SAND		4		
· 2.5										END OF BOREHC	DLE		6		
						ЦШ					1				
	alsta	on associates	inc.			LO	GGEI) BY	: KC	>	DRILLING DATE	: 1 J	lune	201	1
			rs												


Tested By: $\bigcirc RP \ \Box GP \ \triangle RP \ \diamond GP \ \nabla RP$ Checked By: <u>JB</u>

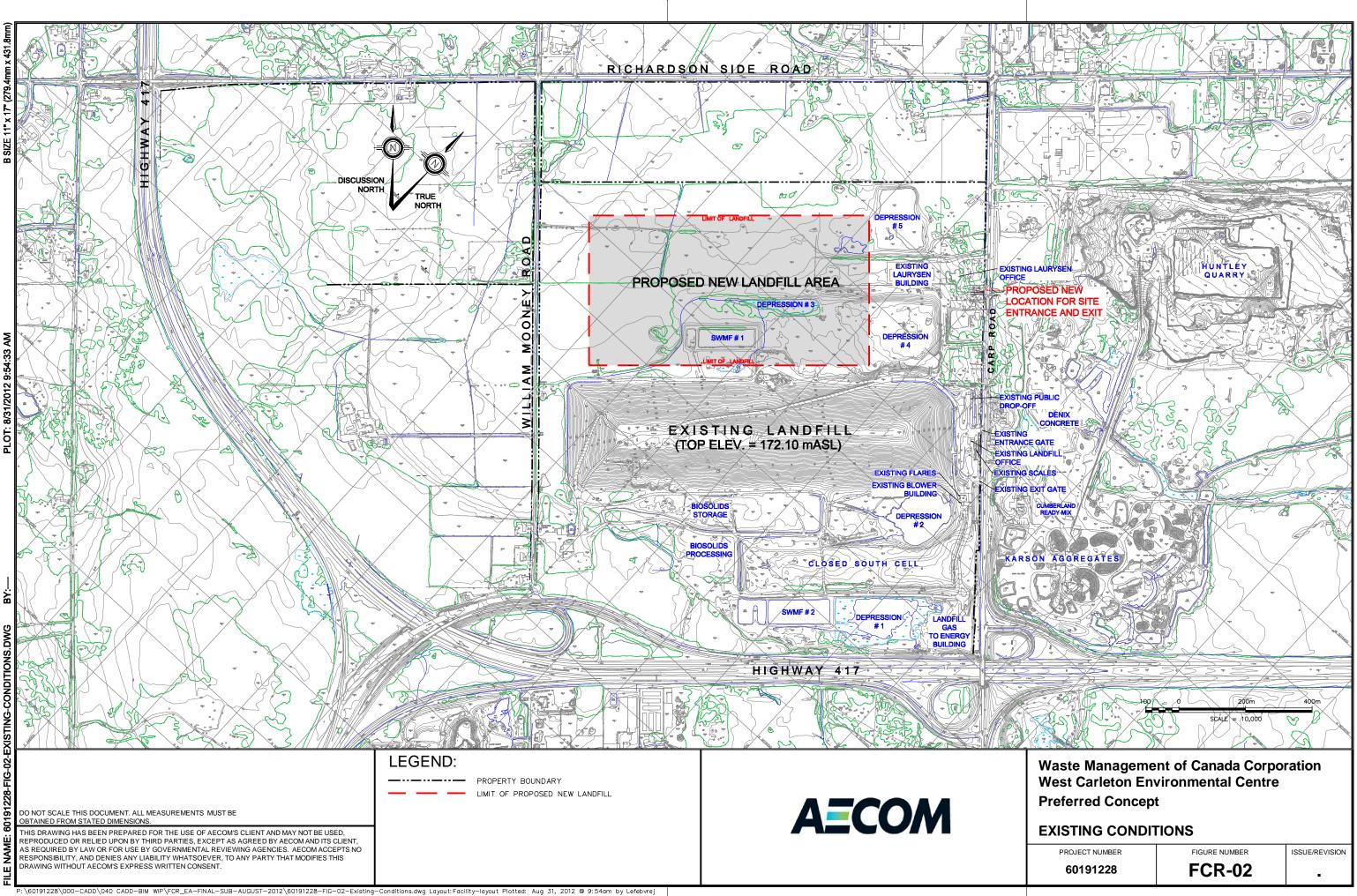

Tested By: ● GP ■ GP ▲ RP __

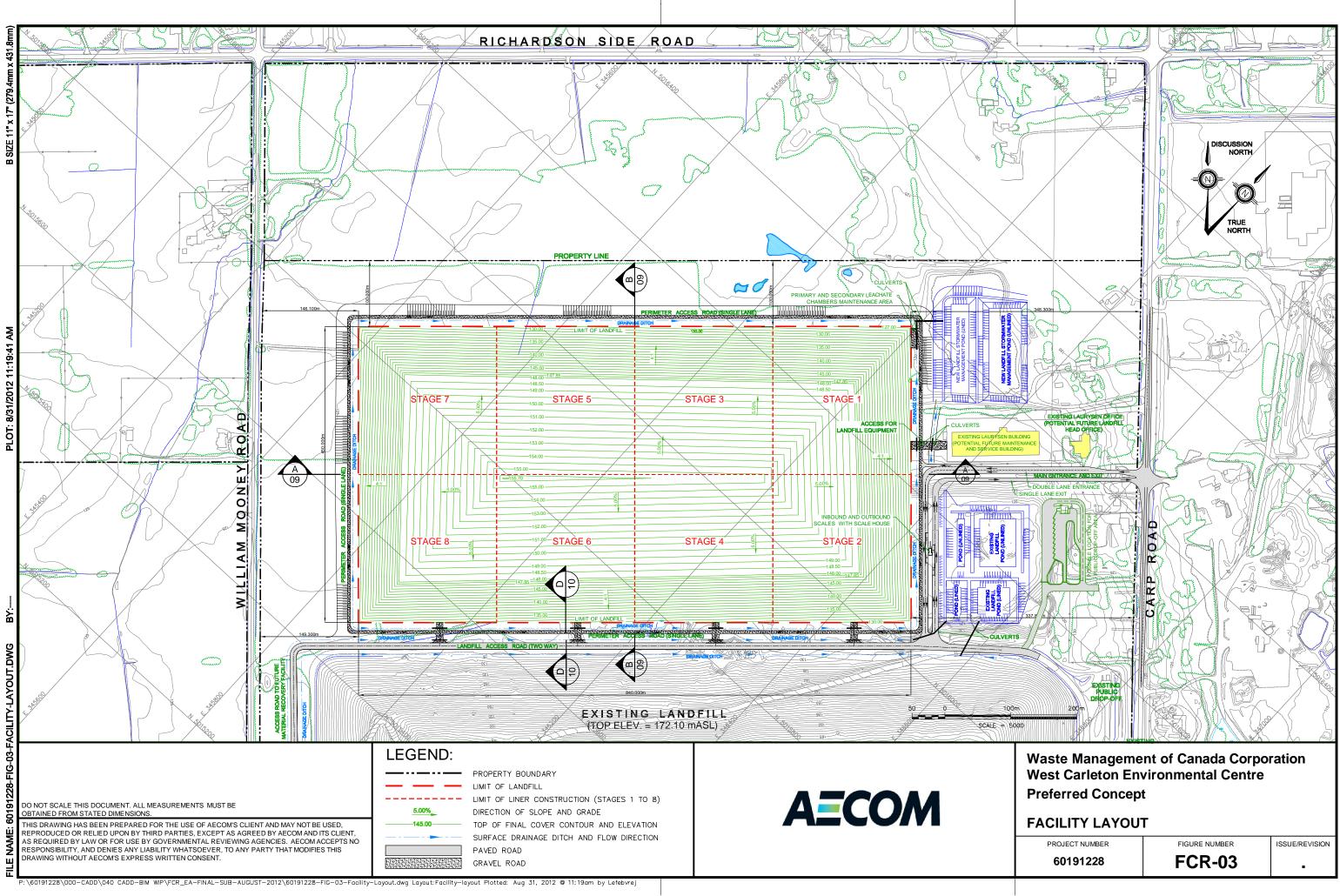
Checked By: JB

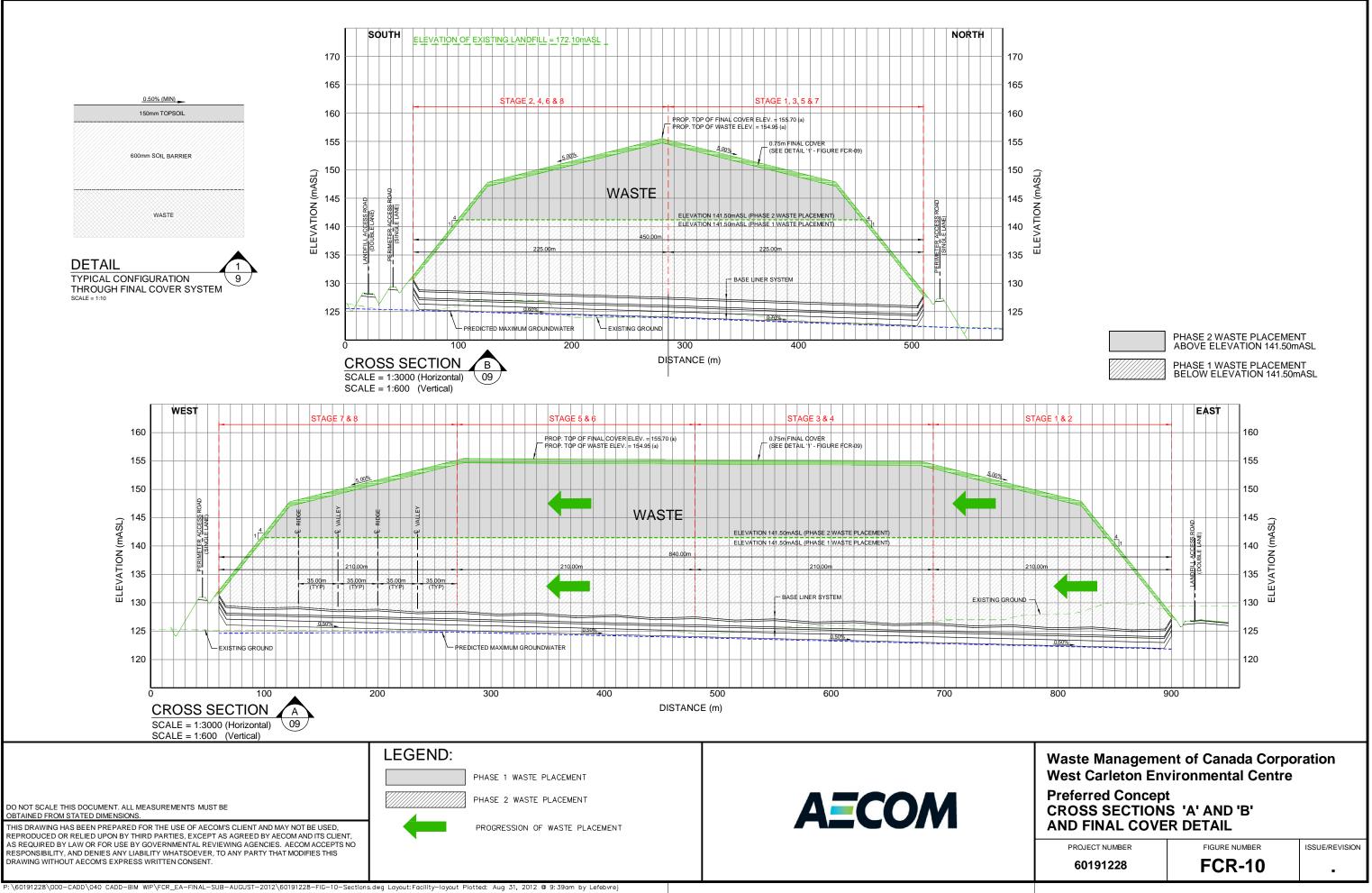
HYDRAULIC CONDUCTIVITY TEST REPORT

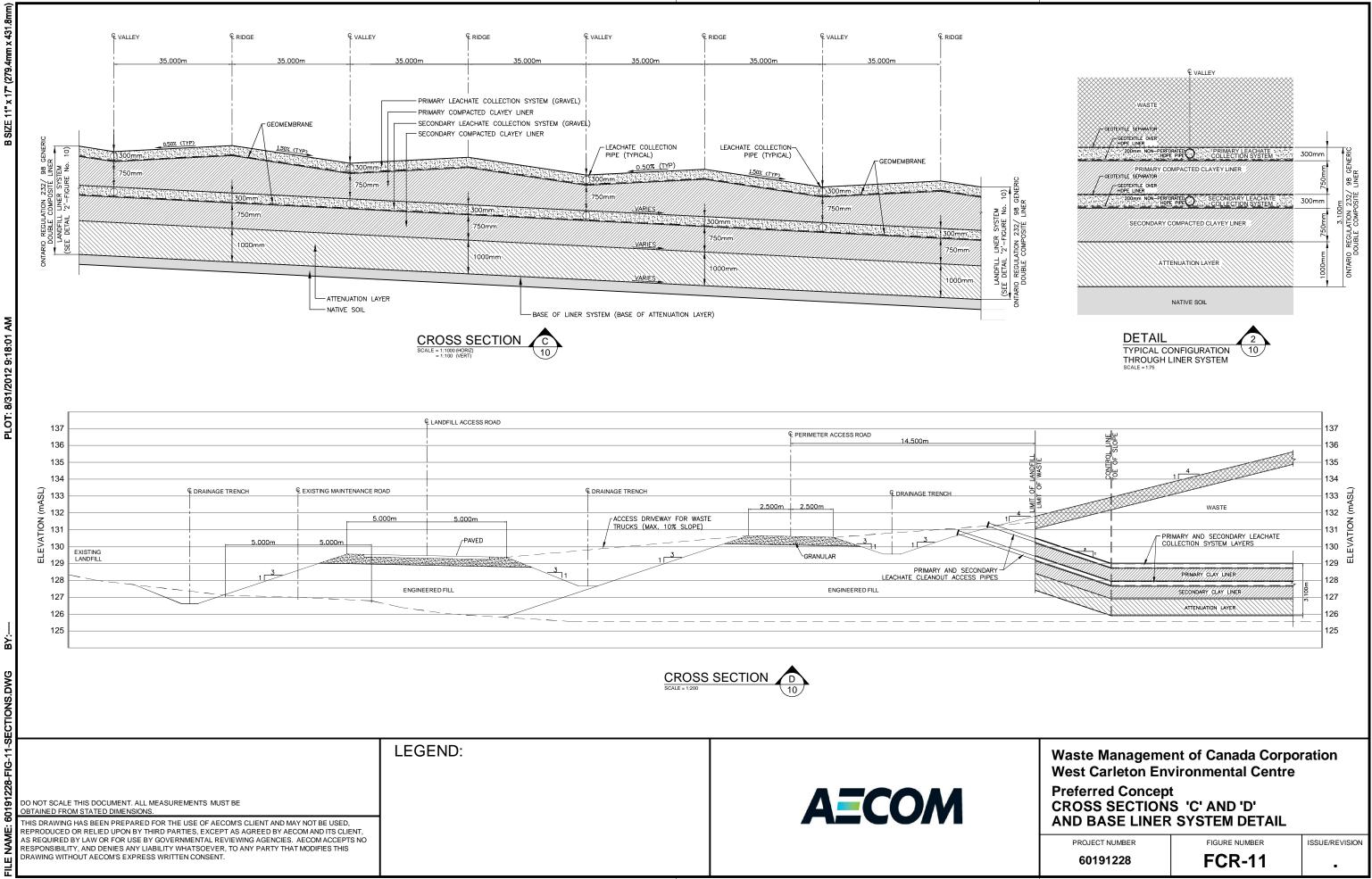


HYDRAULIC CONDUCTIVITY TEST REPORT




alston associates inc.


Figure No. 4


APPENDIX 'D'

FILE

P:\60191228\000-CADD\040 CADD-BIM WIP\FCR_EA-FINAL-SUB-AUGUST-2012\60191228-FIC-11-Sections.dwg Layout:Facility-layout Plotted: Aug 31, 2012 🕲 9:18am by Lefebvrej

APPENDIX 'E'

Slope stability analysis

Input data

Project

Task :13-107 Carp Landfill DevelopmentDescription :Slope Stability Analysis - south to north, center of pileAuthor :CA/KCDate :2013-08-29

Settings

Standard - safety factors Stability analysis

Verification methodology : Safety factors (ASD)

	Safety factors		-she was
and the second second second second	Permanent design situation		
Safety factor :	SF _s =	1.50 [-]	

Interface

No.	Interface location	Coordinates of interface points [m]					
NO.	interface location	x	z	x	z	x	z
		0.00	15.00	2.35	14.97	15.00	17.50
		25.00	17.50	30.00	16.50	40.00	18.50
		45.00	18.50	50.00	17.50	60.00	19.87
1) AND I	130.00	36.50	280.00	44.50	430.00	36.50
	1	515.26	17.55	520.00	16.50	522.00	17.50
		524.00	17.50	540.00	12.50	542.39	11.74
		542.41	11.73	580.00	11.50		
-		60.00	19.87	65.00	18.50	505.00	15.50
2		515.26	17.55				
		2.35	14.97	40.00	14.50	103.00	15.50
		103.11	15.61	193.33	14.83	200.00	14.00
3		256.96	14.28	374.19	13.27	400.00	12.50
		500.00	12.00				
		0.00	13.32	60.00	13.32	280.00	7.95
4		500.00	12.00	542.41	11.73		
		0.00	11.62	60.00	11.62	280.00	6.15
5		500.00	5.00	580.00	5.00		

Soil parameters - effective stress state

No.	Name	Pattern	Φef [°]	c _{ef} [kPa]	γ [kN/m ³]
1	Compact Silty Sand		36.00	0.00	22.00
2	Silty Sand Till		38.00	0.00	22.50

[GE05 - Slope Slability | version 5.16 12.0 | hardware key 8221 / 1 | Aiston Associates Inc | Copyright © 2013 Fine spot is r.o. All Rights Reserved | www.finesoftware.eu] [Dealer : GTS CAO BUILO Limited | www.gtscad.com]

13-107 Carp Landfill Development

CA/KC

No.	Name	Pattern	Φef [°]	c _{ef} [kPa]	γ [kN/m³]
3	Clay Liner		28.00	0.00	19.50
4	Waste		26.00	0.00	7.80

Soil parameters - uplift

No.	Name	Pattern	^Y sat [kN/m ³]	7s [kN/m ³]	n [-]
1	Compact Silty Sand		22.00		
2	Silty Sand Till		22.50		
3	Clay Liner		19.50		
4	Waste		7.80		

Soil parameters

Compact Silty Sand Unit weight : Stress-state : Angle of internal friction : Cohesion of soil : Saturated unit weight :	$\gamma = 22.00 \text{ kN/m}^3$ effective $\varphi_{ef} = 36.00 \circ$ $c_{ef} = 0.00 \text{ kPa}$ $\gamma_{sat} = 22.00 \text{ kN/m}^3$
Silty Sand Till Unit weight : Stress-state : Angle of internal friction : Cohesion of soil : Saturated unit weight :	γ = 22.50 kN/m ³ effective φ _{ef} = 38.00 ° c _{ef} = 0.00 kPa γ _{sat} = 22.50 kN/m ³
Clay Liner Unit weight : Stress-state : Angle of internal friction : Cohesion of soil : Saturated unit weight :	γ = 19.50 kN/m ³ effective φ _{ef} = 28.00 ° c _{ef} = 0.00 kPa γ _{sat} = 19.50 kN/m ³

[GEO5 - Slope Stability | version 5.16.12.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r o. All Rights Reserved | www.finesoftware.eu] [Dealer : GTS CAD BUILO Limited | www.glscad.com]

Waste

Unit weight :	γ =	7.80 kN/m ³
Stress-state :	effectiv	/e
Angle of internal friction :	¢ef [≃]	26.00 °
Cohesion of soil :	c _{ef} =	0.00 kPa
Saturated unit weight :	γ _{sat} =	7.80 kN/m ³

Rigid bodies

No.	Name	Sample	γ [kN/m ³]
1	Bedrock		24.00

Assigning and surfaces

0.	Surface position	Surface position Coordinates of surface points [m]			[m]	Assigned
0.	Surface position	x	z	X	z	soil
		65.00	18.50	505.00	15.50	Waste
		515.26	17.55	430.00	36.50	vvasie
		280.00	44.50	130.00	36.50	XXXXXXXXX
		60.00	19.87			
		542.41	11.73	542.39	11.74	Olay Lines
		540.00	12.50	524.00	17.50	Clay Liner
		522.00	17.50	520.00	16.50	
		515.26	17.55	505.00	15.50	
		65.00	18.50	60.00	19.87	
		50.00	17.50	45.00	18.50	
		40.00	18.50	30.00	16.50	
		25.00	17.50	15.00	17.50	
		2.35	14.97	40.00	14.50	
		103.00	15.50	103.11	15.61	
		193.33	14.83	200.00	14.00	
		256.96	14.28	374.19	13.27	
		400.00	12.50	500.00	12.00	
		60.00	13.32	280.00	7.95	Compared Cillus Cond
		500.00	12.00	400.00	12.50	Compact Silty Sand
		374.19	13.27	256.96	14.28	
		200.00	14.00	193.33	14.83	· · · / . / · · /
		103.11	15.61	103.00	15.50	10 010 100%
		40.00	14.50	2.35	14.97	
		0.00	15.00	0.00	13.32	
		60.00	11.62	280.00	6.15	O'lles O and Till
		500.00	5.00	580.00	5.00	Silty Sand Till
		580.00	11.50	542.41	11.73	
		500.00	12.00	280.00	7.95	600000
		60.00	13.32	0.00	13.32	0/0 9000
			11.62			0/00/09

[GEO5 - Slope Stability | version 5 16.12.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Dealer : GTS CAO BUILD Limited | www.gtscad.com]

13-107 Carp Landfill Development

No.	Surface position	Coordin	ates of sur	Assigned		
NO.		x	z	×	z	soil
		500.00	5.00	280.00	6.15	Dedecal
		60.00	11.62	0.00	11.62	Bedrock
5		0.00	0.00	580.00	0.00	
° =		580.00	5.00			

Water

Water type : GWT

No.	GWT location	Coordinates of GWT points [m				(m)	
NO.	GWI IOCAUOII	×	z	x	z	x	z
		0.00	14.48	0.38	14.48	44.90	14.72
		50.10	17.29	60.15	19.75	65.91	20.01
1	1)	504.45	16.99	516.79	16.99	519.80	16.26
		542.25	11.29	579.35	10.80	580.00	10.79

Tensile crack

Tensile crack not inputted.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation : permanent

Results (Stage of construction 1)

Analysis 1

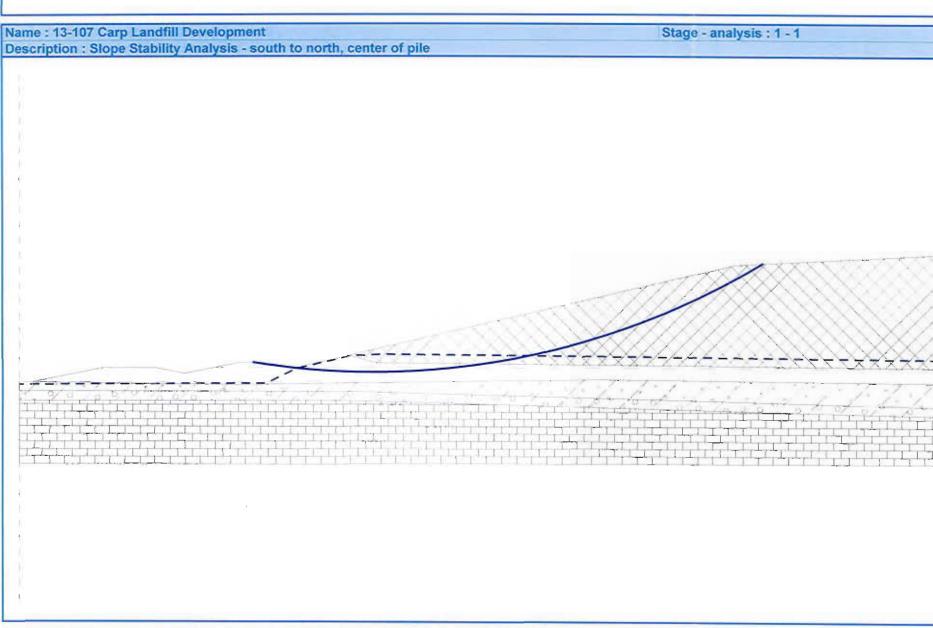
Circular slip surface

	Slip surfa	ice parameters		
x =	64.09 [m]	Angles	α1 =	-9.12 [°]
z =	152.89 [m]	Angles .	α2 =	31.45 [°]
R =	136.11 [m]			ANALYSSIMI II. IN
	z =	x = 64.09 [m] z = 152.89 [m]	z = 152.89 [m] Angles :	$x = 64.09 [m]$ $\alpha_1 =$ $z = 152.89 [m]$ Angles :

Segments restricting slip surface

No.	First point		Second point	t in the second s
	x [m]	z [m]	x [m]	z [m]
1	133.31	36.84	132.71	36.53
2	132.80	36.54	130.07	36.41
3	132.53	36.90	50.65	17.45
4	51.04	17.46	49.94	17.54

Factor of safety = 2.07 > 1.50


Slope stability ACCEPTABLE

GEO5 - Stope Stability | version 5 16 12 0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol s ro. All Rights Reserved | www finesoftware.eu] [Deater : GTS CAD BUILO Limited | www glscad com]

CA	K	C
~,		~

[GE05 -Slopa Stability] version 5 16 12 0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright @ 2013 Fine spot s r o. All Rights Reserved | www.finesoftware.eu] [Dealer : GTS CAD BUILD Limited | www.gtscad.com]

[GEO5 - Slope Stability | version 5 16.12 0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Dealer : GTS CAD BUILD Limited | www.gtsCad.com]

APPENDIX 'F'

Settlement analysis

Input data

Project

Task :13-107 Carp Landfill DevelopmentDescription :Settlement Analysis - south to north, center of pileAuthor :CA/KCDate :2013-08-29

ţ

Settings

Standard - safety factors Settlement

Analysis method :Analysis using oedometric modulusRestriction of influence zone :by percentage of Sigma,OrCoeff. of restriction of influence zone :10.0 [%]

Interface

No	No. Interface location		Coordinates of Interface points [m]						
NO.		x	Z	X	Z	x	z		
		0.00	125.50	40.00	125.00	103.00	126.00		
100		104.00	127.00	180.00	127.00	200.00	124.50		
1		300.00	125.00	350.00	124.50	400.00	123.00		
		500.00	122.50	580.00	122.00				
2		0.00	123.82	60.00	123.82	280.00	118.45		
		500.00	122.50						
-		0.00	122.12	60.00	122.12	280.00	116.65		
3	, , , , , , , , , , , , , , , , , , , ,	500.00	115.50	580.00	115.50				

Incompressible subsoil

No.	Location of incompress.subsoil	Coordinates of points of incompress.subsoil [m]							
	Location of incompress.subson	×	z	x	z	x	z		
-10		0.00	119.12	60.00	119.12	280.00	113.65		
1		500.00	112.50	580.00	112.50		-		

Soil parameters

Compact Silty Sand Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{oed} = γ _{sat} =	22.00 kN/m ³ 110.00 MPa 22.00 kN/m ³
Silty Sand Till Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{oed} = γ _{sat} =	22.50 kN/m ³ 350.00 MPa 22.50 kN/m ³
Bedrock Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{oed} = γ _{sat} =	24.00 kN/m ³ 500.00 MPa 24.00 kN/m ³

Clay Liner

[GEO5 - Settlement || version 5.16.10.0 | hardware key 8221 / 1] Alston Associates Inc | Copyright @ 2013 Fine spoil.sr.o. All Rights Reserved | www:finesoftware.eu} (Dealer · GTS CAD BUILD Limited | www.glscad.com]

CAVKC

Unit weight :	γ =	19.50 kN/m ³
Oedometric modulus :	E _{oed} =	25.00 MPa
Saturated unit weight :	γ _{sat} =	19.50 kN/m ³
Waste Unit weight : Oedometric modulus : Saturated unit weight :	É _{oed} =	7.80 kN/m ³ 5.00 MPa 7.80 kN/m ³

Assigning and surfaces

No.	Surface position	Coordi	nates of su	Assigned		
140.	Surface position	x	z	x	z	soil
		60.00	123.82	280.00	118.45	Compact Silty Sand
		500.00	122.50	400.00	123.00	Compact Silly Sand
		350.00	124.50	300.00	125.00	
1 +		200.00	124.50	180.00	127.00	· / · / · / · / ·
		104.00	127.00	103.00	126.00	1º 1º 1º 2 on
		40.00	125.00	0.00	125.50	• / • / • • •
		0.00	123.82			
		60.00	122.12	280.00	116.65	City Court Till
		500.00	115.50	580.00	115.50	Silty Sand Till
2 -		580.00	122.00	500.00	122.50	0007 00 000
		280.00	118.45	60.00	123.82	60/00/01
		0.00	123.82	0.00	122.12	0/0 \$ 0/0 00
		500.00	115.50	280.00	116.65	Dedreek
		60.00	122.12	0.00	122.12	Bedrock
3 =		0.00	110.50	580.00	110.50	البلول والراب الراب
		580.00	115.50			

Water

Water type : No water

Holes layout

Layout and refinement of holes : standard

Horizontal layout

Layout pattern :	exact
Add holes :	by number of sections
Number of sections :	20

Vertical refinement

No.	From depth [m]	Refinement [m]
1	0.00	0.10
2	2.00	0.30
3	5.00	0.50
4	10.00	2.00
5	30.00	10.00

Results (Stage of construction 1)

Results

Analysis of geostatic stress was successfully completed

Input data (Stage of construction 2)

Earth cut

No. Cut locatio	Cut location		Coordinates of cut points [m]				
	ouriocation	x	z	x	z	x	z
1	······································	0.00	127,00	580.00	122.00		

Assigning and surfaces

No.	Surface position	Coordi	nates of su	[m]	Assigned	
unite position	Surface position	×	z	x	z	soil
17		400.00	123.00	374.19	123.77	Compact Silty Sand
		256.96	124.78	200.00	124.50	Compact Sitty Sand
		193.33	125.33	103.11	126.11	
1 -		103.00	126.00	40.00	125.00	· / · / · / · · · ·
		0.00	125.50	0.00	123.82	10 0/00/00/01
		60.00	123.82	280.00	118.45	· / · / · · · · · ·
		500.00	122.50			
		60.00	122.12	280.00	116.65	0.11. 0. 1.7.11
		500.00	115.50	580.00	115.50	Silty Sand Till
2		580.00	122.00	500.00	122.50	0004.204.
		280.00	118.45	60.00	123.82	60100000
		0.00	123.82	0.00	122.12	0/0000000
		500.00	115.50	280.00	116.65	Dedroek
		60.00	122.12	0.00	122.12	Bedrock
3 💳		0.00	110.50	580.00	110.50	
		580.00	115.50			

Water

Water type : No water

Results (Stage of construction 2)

Results

Analysis performed, method Analysis using oedometric modulus Maximum settlement = 0.0 mm Maximum depth of influence zone = 0.00 m

Input data (Stage of construction 3)

Embankment interface

No.	Interface location		Coordinates of interface points [m]							
INO.		×	z	x	z	x	z			
		2.35	125.47	15.00	128.00	25.00	128.00			
		30.00	127.00	40.00	129.00	45.00	129.00			
		50.00	128.00	60.00	130.37	130.00	147.00			
1		∃ 280.00	155.00	430.00	147.00	515.26	128.05			
		520.00	127.00	522.00	128.00	524.00	128.00			
		540.00	123.00	542.39	122.24	542.41	122.23			
		60.00	130.37	65.00	129.00	505.00	126.00			
2		515.26	128.05							

Assigning and surfaces

Na	Surface position	Coordi	nates of sur	Assigned		
No.	Surface position	x	z	×	z	soil
		65.00	129.00	505.00	126.00	Alexia
		515.26	128.05	430.00	147.00	Waste
1		280.00	155.00	130.00	147.00	XXXXXXXXX
, i		■ 60.00	130.37			
		400.00	123.00	500.00	122.50	
		542.41	122.23	542.39	122.24	Clay Liner
		540.00	123.00	524.00	128.00	
		522.00	128.00	520.00	127.00	
		515.26	128.05	505.00	126.00	
		65.00	129.00	60.00	130.37	
2		50.00	128.00	45.00	129.00	
		40.00	129.00	30.00	127.00	
		25.00	128.00	15.00	128.00	
		2.35	125.47	40.00	125.00	
		103.00	126.00	103.11	126.11	
		193.33	125.33	200.00	124.50	
		256.96	124.78	374.19	123.77	
		400.00	123.00	374.19	123.77	
		256.96	124.78	200.00	124.50	Compact Silty Sand
		193.33	125.33	103.11	126.11	
3		103.00	126.00	40.00	125.00	· / · % / · %
		2.35	125.47	0.00	125.50	10 0/0 /0 0 /0
		0.00	123.82	60.00	123.82	
		280.00	118.45	500.00	122.50	
		60.00	122.12	280.00	116.65	
		500.00	115.50	580.00	115.50	Silty Sand Till
		580.00	122.00	542.41	122.23	
4		500.00	122.50	280.00	118.45	°6°60°9
		60.00	123.82	0.00	123.82	0/0 9'0 00
		0.00	122.12			0/00/09

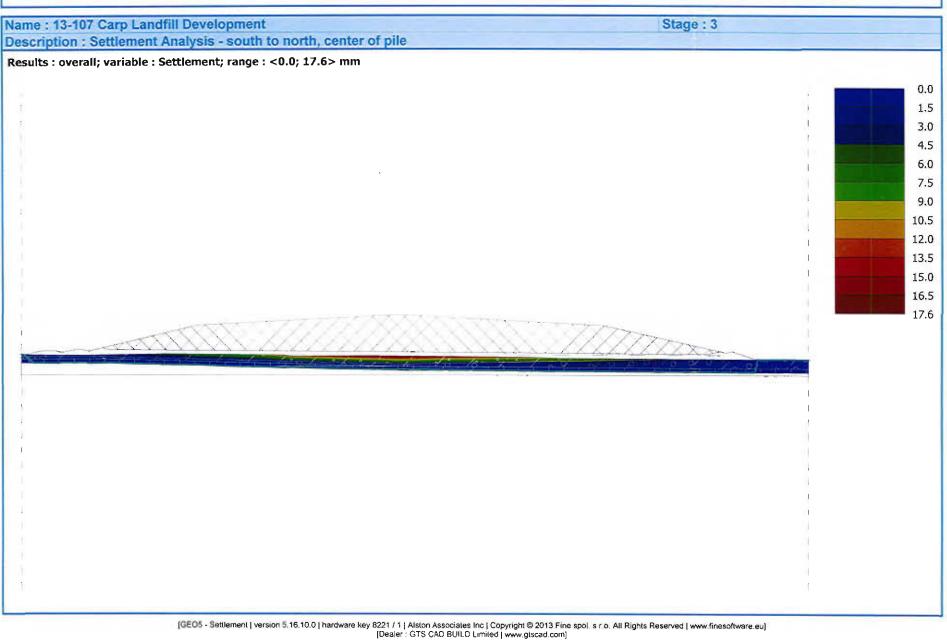
[GE05 - Settlement | version 5.16 10 0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright @ 2013 Fine spot. s r.o. All Rights Reserved | www.finesoftware eu) [Dealer : GTS CAD BUILD Limited | www.gtscad.com]

13-107 Carp Landfill Development

No.	Surface position	Coordin	Coordinates of surface points [m]			
	ourrace position	x	z	x	z	soil
		500.00	115.50	280.00	116.65	Destand
		60.00	122.12	0.00	122.12	Bedrock
5 .		0.00	110.50	580.00	110.50	
с г		580.00	115.50			

Water

Water type : No water


Results (Stage of construction 3)

Results

Analysis performed, method Analysis using oedometric modulus

Maximum settlement = 17.6 mm

Maximum depth of influence zone = 10.00 m

Settlement analysis

Input data

Project

Task :13-107 Carp Landfill DevelopmentDescription :Settlement Analysis - west to east, center of pileAuthor :CA/KCDate :2013-08-29

Settings

Standard - safety factors Settlement

Analysis method :Analysis using oedometric modulusRestriction of influence zone :by percentage of Sigma,OrCoeff. of restriction of influence zone :10.0 [%]

Interface

No.	Interface location		Coordinates of interface points [m]						
NO.	interface location	×	z	x	z	×	z		
		0.00	125.00	260.00	125.00	460.00	126.00		
		480.00	125.50	510.00	126.00	700.00	127.00		
1		750.00	128.00	820.00	128.00	840.00	130.00		
		900.00	130.00	960.00	130.00				
	1 A A A A A A A A A A A A A A A A A A A	0.00	120.27	90.00	120.44	450.00	118.45		
2		900.80	121.93	960.00	121.93				
	and the second second second second	0.00	119.24	90.00	119.24	450.00	116.65		
3		900.00	117.42	960.00	117.42				

Incompressible subsoil

No.	Location of incompress.subsoil	Coordinates of points of incompress.subsoil [m]							
NO.	Location of incompress.subson	x	z	×	z	×	z		
		0.00	116.24	90.00	116.24	450.00	113.65		
1		900.00	114.42	960.00	114.42				

Soil parameters

Compact Silty Sand Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{bed} = γ _{sat} =	22.00 kN/m ³ 110.00 MPa 22.00 kN/m ³
Silty Sand Till Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{oed} = γ _{sat} =	22.50 kN/m ³ 350.00 MPa 22.50 kN/m ³
Bedrock Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{oed} = γ _{sat} =	24.00 kN/m ³ 500.00 MPa 24.00 kN/m ³

Clay Liner

Unit weight :	γ =	19.50 kN/m ³
Oedometric modulus :	E _{oed} =	25.00 MPa
Saturated unit weight :	γ _{sat} =	19.50 kN/m ³
Waste Unit weight : Oedometric modulus : Saturated unit weight :	E _{oed} =	7.80 kN/m ³ 5.00 MPa 7.80 kN/m ³

Assigning and surfaces

No.	Surface position	Coordin	nates of sur	Assigned		
140.	Surface position	x	Z	x	z	soil
		90.00	120.44	450.00	118.45	Compact Silty Sand
		900.80	121.93	960.00	121.93	Compact Sitty Sand
		960.00	130.00	900.00	130.00	
		840.00	130.00	820.00	128.00	/ 1/ / 2/ 0/ 0
1	<u> </u>	750.00	128.00	700.00	127.00	° / ° / ° ° ° ° ° °
		510.00	126.00	480.00	125.50	1
		460.00	126.00	260.00	125.00	°, °, * °/ . «
		0.00	125.00	0.00	120.27	
		90.00	119.24	450.00	116.65	City Canad Till
		900.00	117.42	960.00	117.42	Silty Sand Till
2		960.00	121.93	900.80	121.93	0 0 0 7 0 0 40
	-	450.00	118.45	90.00	120.44	60100000
		0.00	120.27	0.00	119.24	0/0000000
		900.00	117.42	450.00	116.65	Deducali
		90.00	119.24	0.00	119.24	Bedrock
3 🛏		0.00	111.65	960.00	111.65	had a
	•	960.00	117.42			

Water

Water type : No water

Holes layout

Layout and refinement of holes : standard

Horizontal layout

Layout pattern :	exact
Add holes :	by number of sections
Number of sections	20

Vertical refinement

From depth [m]	Refinement [m]
0.00	0.10
2.00	0.30
5.00	0.50
10.00	2.00
30.00	10.00
	0.00 2.00 5.00 10.00

Results (Stage of construction 1)

Results

Analysis of geostatic stress was successfully completed

Input data (Stage of construction 2)

Earth cut

No.	Cut location	Coordinates of cut points [m]							
	ouriocation	x	z x z x						
1	t	0.00	126.00	960.00	122.00				

Assigning and surfaces

No.	Surface position	Coordi	nates of su	Assigned		
NO.	Surface position	×	z	X	z	soil
		90.00	120.44	450.00	118.45	Ormanal Olive David
		900.80	121.93	960.00	121.93	Compact Silty Sand
1 -		960.00	122.00	240.00	125.00	· / · · / / · ···
		0.00	125.00	0.00	120.27	
		90.00	119.24	450.00	116.65	Oller Creed Till
		900.00	117.42	960.00	117.42	Silty Sand Till
2 -		960.00	121.93	900.80	121.93	0 8 0 7 . 10 4 4
		450.00	118.45	90.00	120.44	60100000
		0.00	120.27	0.00	119.24	0/00000000
		900.00	117.42	450.00	116.65	Bedrock
		90.00	119.24	0.00	119.24	Bedrock
3 📻		0.00	111.65	960.00	111.65	
		960.00	117.42			$\frac{1}{2} \frac{1}{2} \frac{1}$

Water

Water type : No water

Results (Stage of construction 2)

Results

Analysis performed, method Analysis using oedometric modulus

Maximum settlement = 0.0 mm Maximum depth of influence zone = 0.00 m

Input data (Stage of construction 3)

Embankment interface

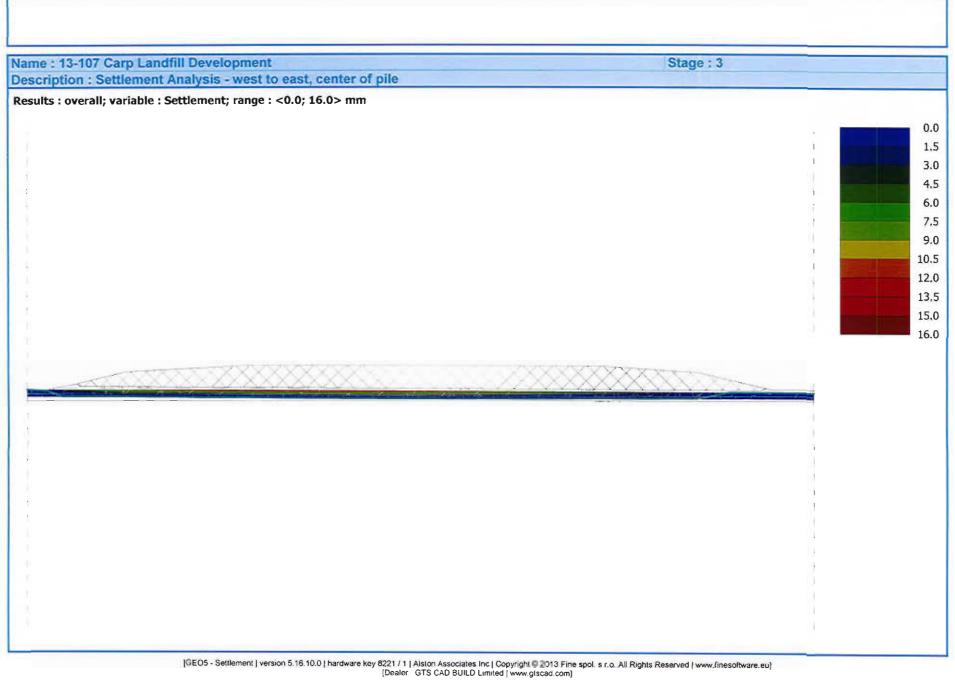
No.	Interface location	Coordinates of interface points [m]					
NO.	Interface location	×	z	x	z	x	z
		25.00	125.00	60.00	132.00	120.00	147.00
1	1	270.00	155.00	700.00	155.00	820.00	147.00
		902.11	127.84	910.00	126.00	960.00	126.00

No.	Interface location		Coordinates of interface points [m]									
140.	interface location	×	z	×	z	×	z					
		60.00	132.00	65.04	129.03	895.00	125.00					
2		900.00	127.00	902.11	127.84							

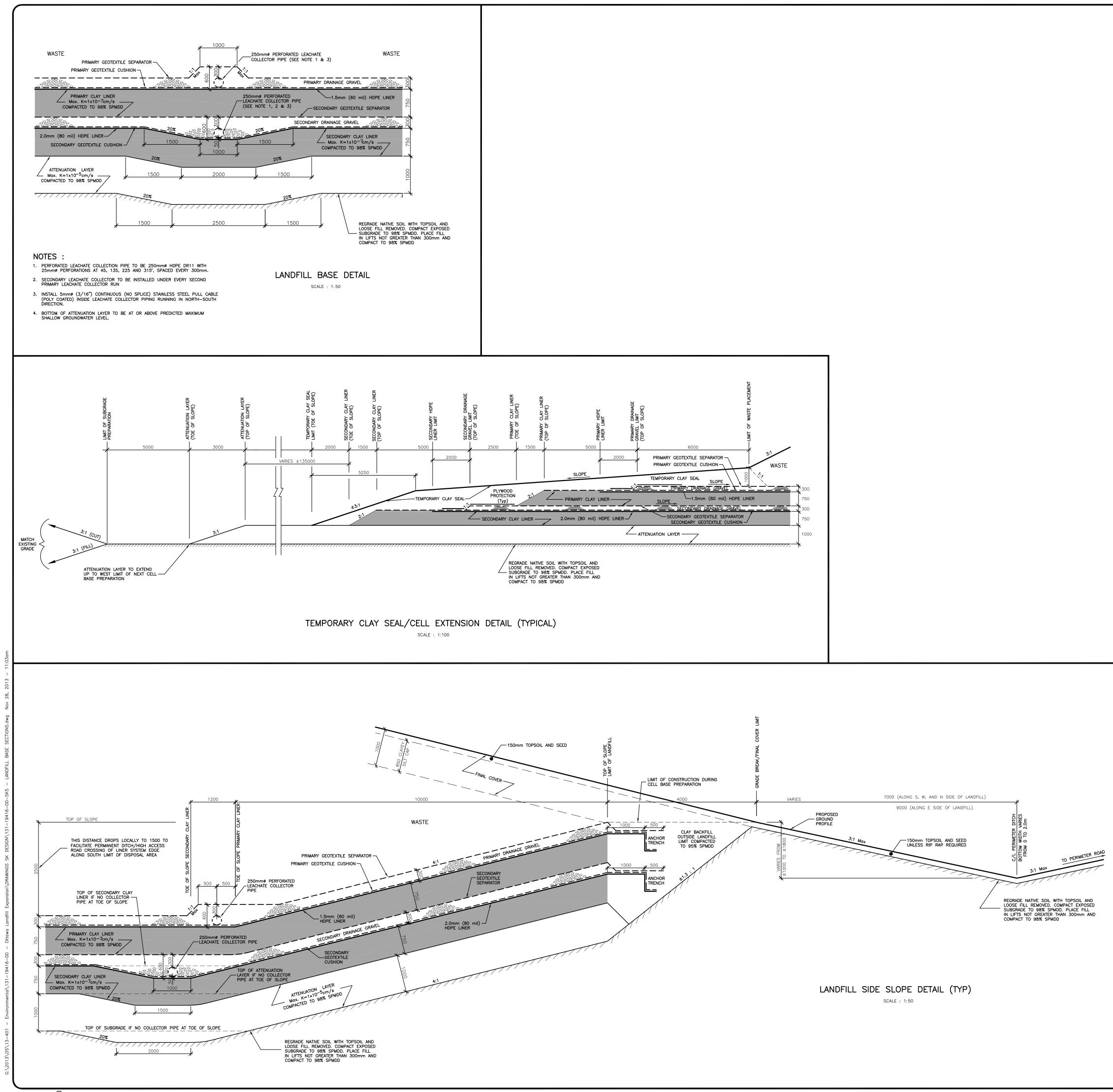
Assigning and surfaces

No.	Surface position	Coordi	nates of su	[m]	Assigned		
NO.	Surface position	×	z	x	z	soil	
		65.04	129.03	895.00	125.00	Waste	
		900.00	127.00	902.11	127.84	vvasie	
1 .		820.00	147.00	700.00	155.00	XXXXXXXXX	
12	•	270.00	155.00	120.00	147.00		
		60.00	132.00				
		960.00	122.00	960.00	126.00	Clay Liner	
		910.00	126.00	902.11	127.84	Ciay Liner	
2		900.00	127.00	895.00	125.00		
		65.04	129.03	60.00	132.00		
		25.00	125.00	240.00	125.00		
		90.00	120.44	450.00	118.45	Compact Silty Sand	
		900.80	121.93	960.00	121.93	Compact Silly Sand	
3		960.00	122.00	240.00	125.00	. 1 . 9 ./	
		25.00	125.00	0.00	125.00	1. 0 0 0 0 0 0	
		0.00	120.27			·/· · · · · · /·	
		90.00	119.24	450.00	116.65	Silty Sand Till	
		900.00	117.42	960.00	117.42	Sity Sand Thi	
4		960.00	121.93	900.80	121.93	0 0 0 4 . 0 4	
		450.00	118.45	90.00	120.44	6000000	
		0.00	120.27	0.00	119.24	0/0000000	
		900.00	117.42	450.00	116.65	Redrock	
		90.00	119.24	0.00	119.24	Bedrock	
5		0.00	111.65	960.00	111.65	- Interlated and a start of the	
	,	960.00	117.42				

Water


Water type : No water

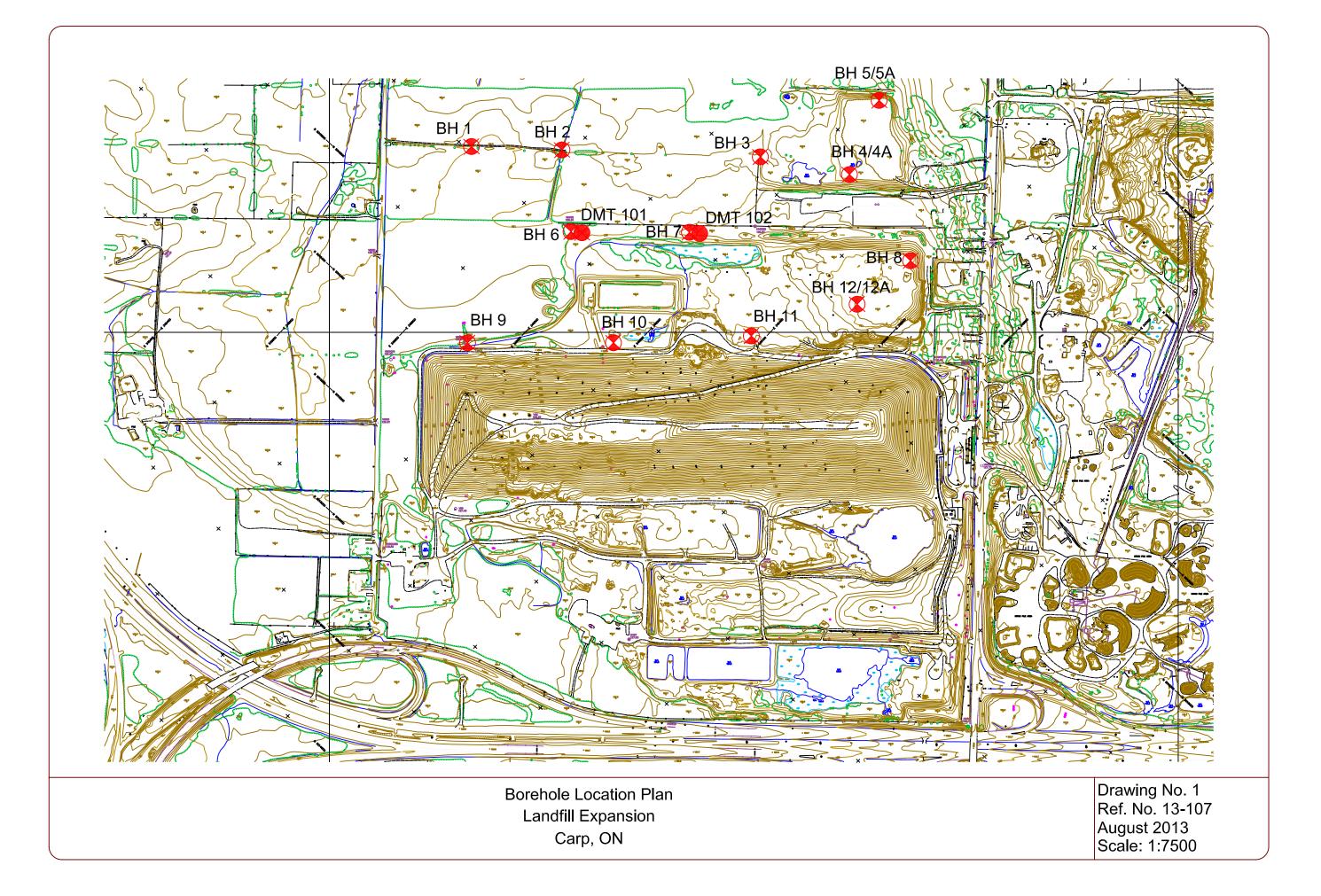
Results (Stage of construction 3)


Results

Analysis performed, method Analysis using oedometric modulus

Maximum settlement = 16.0 mm Maximum depth of influence zone = 10.00 m

APPENDIX 'G'



COPYRIGHT 🔘 GENIVAR INC.

		1450 1st Ave. W, Suite 101, Owen Sound, ON, N4K 6W2 Telephone: (519) 376-7612 / Fax: (519) 376-8008 Toll Free: 1-888-376-7612
		WASTE MANAGEMENT
I ANDEIL BASE SECTIONS		WEST CARLETON ENVIRONMENTAL CENTRE
DWN BY: T C G DATE: NOVEMBER 28, 2013 CHK BY: P S B SCALE: SEE BAR SCALE	WASTE MANAGEMENT OF CANADA CORPORATION	
	SHE Sk	ET (5

ENCLOSURES

	NT: Waste Manag ECT: Landfill Exp				ering INEER				oon Sampling V. (m) 124.94	BH No.:	1					
	TION: Carp, ON)1581		_		TING: 345627.665)7		
		AUGER DRIV	'EN			ORIN	IG				·	HELBY	Π		LIT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS -	40 8 N (Blow	r Streng (kPa) 0 120 1 -Value rs/300mr 0 60	n)		L W.C 40 6		SOIL SYMBOL		SO DESCRI	PTION	SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
- 0.5 - 0.5 - 1.5 - 2.5 - 2.5 - 3.5 - 3.5 4 4.5 5 5.5		Borehole dry and cave- in at 4.0 m below ground3 surface on completion.	N (Blow 20 4 34	-Value	n) 80	20	L W.C 40 6 32				70 mm black sau very lo moist, b SILTY fine (disturf dense very de moist, SILTY S traces of and c occasional and bou (TIL	e to e sAND bed) e to ense grey SAND gravel lay cobbles ulders L)		1A 1B 2A 2B 3 4 5 6 7 7 6 7	(N)Lds 3 20 34 76 56 44 80/ 275	124.5 - 124 - 123.5 - 123 - 122.5 - 122.5 - 122 - 121.5 - 121.5 -
										F	Refusal to advance 5.94 m below gr	ment of augers at				
	aleta	on associates ir								 (C			ر م		10+ 0	012
		onsulting engineers						GED E				DRILLING DATE:	ŏ А	∙ugι	ust 2	013
	CC			REV	IEWED) BY:	: V	N	Page 1 of 1							

	NT: Waste Manag ECT: Landfill Exp						gering and Split Spoon Sampling GINEER: VN ELEV. (m) 123.70 BH No.: 2										
	TION: Carp, ON			NORTH						STING: 345780.621	PROJECT NO.: 13						
		AUGER DRIV	/EN	Η	CORI			_			HELBY	$\overline{\mathbb{T}}$		IT S	POON		
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	Shea 40 8 N (Blow	r Strength (kPa) 0 120 160 -Value rs/300mm) 0 60 80	<u>)</u>	PL W.0		_	SOIL SYMBOL	SO DESCRI	IL	SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)		
- 0.5		Borehole cave-in at 4.0 m and water level at 2.4 m below ground surface on completion.	3							very lo moist, b fine san some grav (Gravel	orown d with rel, FILL		1	3	123.5 - 123 -		
- - - - - - - - - -		Hard augaring at 4.5 m	14										2	14	122.5 -		
		Hard augering at 1.5 m depth. Cobble/boulder encountered between 1.5 and 1.8 m depth.	Ę	55									3	55	122 · 121.5 ·		
- 2.5	Ţ	Cobble/boulder encountered between 2.4 and 3.7 m m depth.	50/7	■ ▲									4	50/ 75	121 ·		
- 3 - - 3.5				62									5	62	120.5		
- - - - - -		Hard augering at 3.7 m depth.	32							dense very de moist, SILTY S	ense grey		6	32	120 119.5		
- 4.5 			5							traces of and gr occasional and bou (TIL	f clay avel cobbles Ilders		7	51	119 118.5		
- 5.5 - 6 		Water strike at 6.1 m depth. Split spoon bouncing.	50/100										8	50/ 100	118 117.5		
- - - - - -															117 116.5		
- 7.5 		Split spoon bouncing.	50/7	5▲									9	50/ 75	116 115.5		
									<u>~</u> κ∧∂ Κ	END OF BOREHC Refusal to advance 8.23 m below gr	ment of augers at						
	aleta	on associates i	nc							<u> </u>				L 10+ 0	012		
													ING DATE: 8 August 201				
	CC	onsulting enginee	3				ט נ	י. זע	VIN	Page 1 of 1							

	NT: Waste Manag					PLI No. 2										
	JECT: Landfill Exp	bansion		-				R: VI			EV. (m) 123.27	BH No.:				
	TION: Carp, ON				_			36.91	_	•	STING: 346115.227		3-10			
SAMF		AUGER DRI	VEN	ar Streng	_		NG			YNA	MIC CONE S	HELBY	\perp	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 (Blov	(kPa) 80 120 N-Value ws/300mi 40 60	160 m)			C. LL 60 80)	SOIL SYMBOL	SO DESCRI	IPTION	SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
- 0 - - - 0.5		Borehole cave-in at 3.4 m and water level at 2.6 m below ground surface on completion.				9 9 9					300 mm black reddish bro fine SAND, t	wn, damp		1A 1B	11	123 -
- - - - - - -			12			14						brown		2	12	122.5 - 122 -
- 1.5 - - - - 2 -			46	6		15					compa very de moist te	ense	,	3	46	121.5 - 121 -
- 2.5 	▼	4	8		15					SILTY find			4	48	120.5 -	
- - - 3.5		Hard augering at 3.0 m depth.	38 /			9				8		TILL		5	38	120 - 119.5 -
- - 4 - - - 4.5		Split spoon bouncing		83/250		5					very de wet, <u>c</u> SAND	grey		6	83/ 250	119-
- 4.3 - - - - - - - -		Cobble/boulder encountered between 4.3 and 5.0 m depth.	50/10	∞ ▲							rock frag	jments		7	50/ 100	118.5 -
	alste	on associates	inc						BY		END OF BOREHC Refusal to advance 5.03 m below gr	ment of augers at round surface.				013
	C						ED BY: KC DRILLING DATE: 9 Augus WED BY: VN Page 1 of 1					ist 2	013			

	NT: Waste Manag					ugering and S NGINEER: VN		N ELEV. (m) 118.60			BH No.: 4						
	JECT: Landfill Exp	ansion		<u> </u>						_							
	ATION: Carp, ON	AUGER DRI	VEN				RING		4.40:			STING: 346287.868	HELBY	<u>5-10</u> ∏			POON
SAIVI				ar Str	ength		TING							μ.	SPL		
Ê				(kPa	•						BOL	SO	П	SAMPLE TYPE	NO		ELEVATION (m)
DEPTH (m)	INSTRUMENTATION DATA	REMARKS		12 -Valu	20 160 Je	-					SOIL SYMBOL	DESCR		LE J	SLE 1	Î	ATIC
DEPI			(Blov	vs/30	0mm) 60 80			W.C.	LL 0 80		SOIL	DESCRI	FION	SAME	SAMPLE 1	SPT(N)	ELEV
_ 0		Grass Surface.					20 2				***			Ť			118.5 -
E		Borehole dry and cave- in at 1.2 m below ground	12			5					***	compact, bro			1	12	-
- 0.5		surface on completion.									***	sand and gr	avel, FILL	Ш			- 118 -
-				$\left \right\rangle$		5					Î		numeriet arev	┢╓╴		73/	-
-1			7	3/22	5	Ó						very dense, ver SILTY SAND, tr			2	225	 117.5 _
-					$V \mid$							and clay					-
- 1.5		Cobble/boulder		/		4						СОВВ	IFS	 		50/	-
E		encountered between	50/7	5▲		•						and BOU		Ш	3	75	117 -
		1.2 and 1.8 m depth. /										END OF BOREHO					
										Refusal to advance 1.83 m below gr	ment of augers at						
											1.00 III below gi	ound Sundee.					
1																	
1																	
1																	
1																	
	alston associates inc.						1	LOGGED BY			: KC	C	DRILLING DATE:	8 A	lugu	ist 2	013
	CC							EWE				Page 1 of 1					

	NT: Waste Manag				ugering NGINEER: VN			VN ELEV. (m) 118.60			BH No.: 4A					
	JECT: Landfill Exp	bansion														
	TION: Carp, ON			NC				4.46			STING: 346287.868	-	8-10 Ⅲ			
SAMF		AUGER DRI	VEN Shea	ar Stre	ength	RING	i			YNA	MIC CONE S	HELBY _	Ш_	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8	(kPa) 30 12 I-Valu vs/300	20 160 le Omm)			. LL		SOIL SYMBOL	SO DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
	Casing Bentonite Sand Sand and screen (50 mm Diameter)	Water level measured 0.3 m below ground surface on 9 August 2013. Cobbles/boulders encountered between 1.2 and 1.8 m depth.	(Blov	vs/300				. LL 0 800			Straight to 1.8 m END OF BOREHC Refusal to advance 1.83 m depth below	auger depth DLE ment of augers at				118.5 - 118 - 117.5 - 117 -
	C						IEWE				Page 1 of 1	51				

	NT: Waste Manag						ugering and S NGINEER: VN				poon Sampling		5					
	JECT: Landfill Exp	pansion		<u> </u>									EV. (m) 117.58	BH No.:				
	ATION: Carp, ON			NC						1.25	-	•	STING: 346222.746	-	3-10 ∏			
SAM	PLE TYPE	AUGER DRI	VEN Shea	r Stre	ength		UR	ING] L	JYNA		HELBY	μ_	SPL	.11 5	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8 N (Blow	(kPa) 0 12 -Valu /s/30) 20 16 Je 0mm)	0				. LL		SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
_ 0		Borehole dry and cave-	20 4)	2	0 4	06	080)		100 mm T	OPSOIL		1A	50/	ш 117.5 -
- 0.5		in at 1.5 m below ground surface on completion. Cobbles/boulders encountered between		50779	5		1					14004004 100000000000000000000000000000				1B	75	- - - 117 –
Ē		0.3 and 3.0 m depth.										000			\vdash			-
- 1 - -			34 🛦				6					0200200	dens very c moist bro	ense o wet		2	34	116.5 – - -
- 1.5 - -		Water strike at 1.5 m depth.		87	1225	¥	5					84084084 00080084	mediu coarse and GF	ım to SAND		3	87/ 225	116 -
-2											0000	occasiona	l cobbles				115.5 -	
E .			0.00	205		5					0000	and bo	ulders			86/	-	
- 2.5			86/	225							000000000000000000000000000000000000000				4	225	115 -	
- 3	<u> </u>											CaO;	END OF BOREH		-			-
													Refusal to advance	ement of augers at				
													3.05 m below g	round surface.				
1																		
1																		
														1				
	alston associates inc. consulting engineers									LOGGED BY				DRILLING DATE: 8 August 201			013	
1	CC	rs					F	REVI	EWE	ED I	BY: '	VN	Page 1 of 1					

CLIENT: Waste Ma				HOD		_							E	^		
PROJECT: Landfill			<u> </u>	JECT					_		EV. (m) 117.58	BH No.:				
LOCATION: Carp, C			NOR				551(J.951			STING: 346222.746		s-10 ∏		17.0	DOOL
SAMPLE TYPE	AUGER	VEN Shea	ar Streng		COR	ING					MIC CONE S	HELBY _	Ш.	SPL		POON
Ê INSTRUMENTAT	ION REMARKS	40 8 N (Blov	(kPa) 30 120 I-Value vs/300m	160 im)		PL \ 20 4(SOIL SYMBOL	SO DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
DATA O Casing Benton O.5 Sand Sanda Sarren Diamet	Water level measured ite 1.9 m below ground surface on completion, 1.0 m below ground surface on 9 August 2013. nd (50 Cobbles/boulders	(Blov	I-Value	ım)							DESCR Straight to 1.8 m END OF BOREHO Refusal to advance 2.44 m depth below	auger depth DLE ment of augers at	SAMPLE	SAMPLE		117.5 - 1 117.5 - 1 116.5 - 1 116.5 - 1 115.5 - 1
	ston associates	inc.					OGC	GEDI	BY:	ĸ	>	DRILLING DATE:	8 A	Augu	ıst 2	013
	consulting engineers								D BY			Page 1 of 1	57	90		

	NT: Waste Manag					_		ng and ER: VI	-		poon Sampling	BH No.:	6			
	IECT: Landfill Exp	ansiun						824.98			EV. (m) 125.45 STING: 345920.566					
		AUGER DRIV	FN		7			024.30				HELBY	<u> </u>		ITS	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS -	Shear (40 80 N- (Blows	r Strengt kPa) 0 120 1 Value s/300mm	h €0 1)	Ρ	'L V	V.C. LL]	SOIL SYMBOL	SO DESCRI	IL		SAMPLE NO.	SPT(N)	ELEVATION (m)
_ 0		Grass Surface	20 40	<u>3 60 8</u>	30		40	60 80)	Ň	root invasion		0 	S	ŝ	Ē
- - - - - -		Borehole cave-in at 3.0 3 m below ground surface on completion.				6								1	3	125 -
- - 1 - - - 1.5			18									reddish browr		2	18	124.5 - 124 -
- 2			1 9			18						to browr		3	19	123.5 -
- 2.5		Water strike at 2.3 m depth. 2	21			18								4	21	123 - 122.5 -
- 3 - - - 3.5			17			20					comp moist to SAN trace	o wet D to		5	17	122.5 -
- 4			33 🔺			18					some trace o			6	33	121.5 -
- 4.5 - - - 5			48			20								7	48	121 - 120.5 -
- 5.5													-			120 -
- 6 - - - 6.5			68/	275		16 •						grey	/	8	68/ 275	119.5 - 119 -
- - - - - -		Hard augering at 7.0 m depth.									very de	anse	-			118.5 -
- 7.5 - - - 8			50/125			7					moist to w SILTY S traces clay and	et, grey SAND s of		9	50/ 125	118 - 117.5 -
- 8.5											occasional and cob (TILI	boulders obles _)				117 -
											END OF BOREHO Refusal to advancer 8.84 m below gr	ment of augers at	t			
	aleta	on associates ir						DGGED						\~·		012
							-					DRILLING DATE: Page 1 of 1	07	nugl	ist Z	013
	CC	onsulting engineers	3						י עב	זע.	VIN	rayerun				

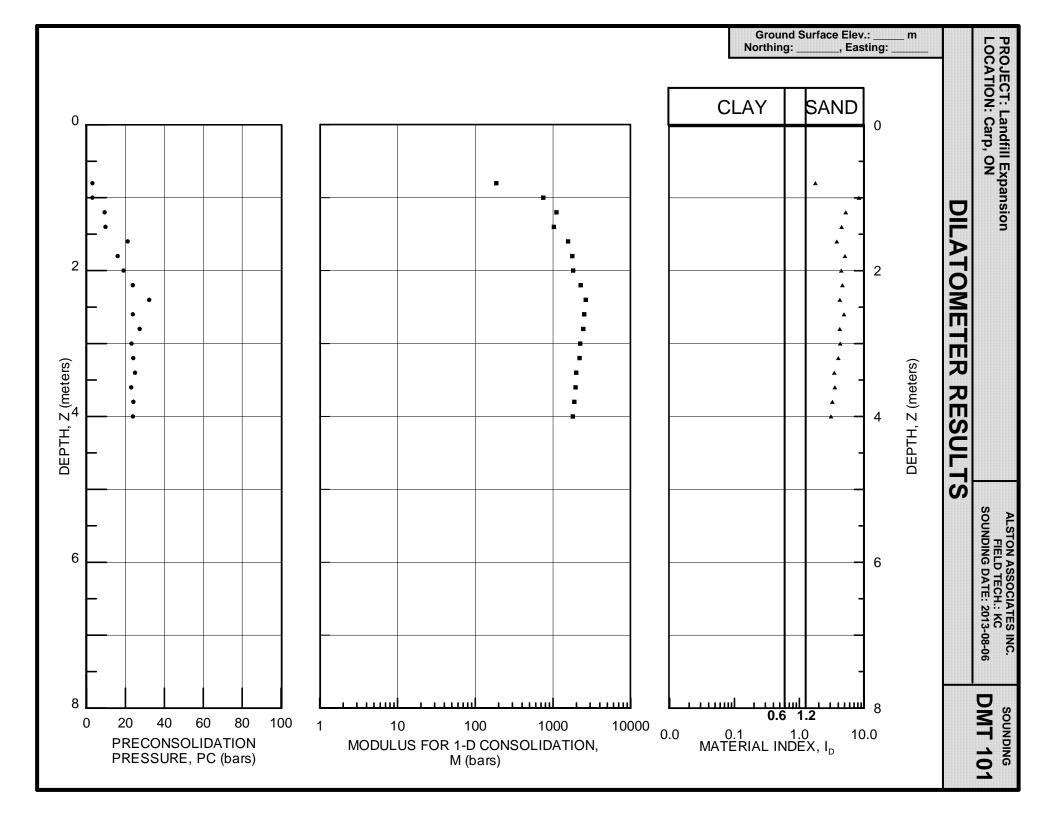
	NT: Waste Manag								plit S	poon Sampling		-			
	JECT: Landfill Exp	ansion		PROJE						EV. (m) 125.95	BH No.:				
	TION: Carp, ON			NORTH					•	STING: 346114.995		8-10			
SAMF		AUGER DRI	VEN		CC	RING	[DYN/		HELBY -		SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8	ar Strength (kPa) <u>30 120 160</u> J-Value vs/300mm) 40 60 80			W.C.		SOIL SYMBOL	SO DESCRI		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
- 0		Grass Surface Borehole cave-in at 6.1 m and water level at 5.8 m below ground surface	3							root invasion loose, dam mediur	m to		1	3	125.5 -
- - - - - 1		on completion.	23							coarse S damp	SAND		2	23	- - 125 - -
- - - - 1.5															124.5 -
- - - 2 -			28 🔺							comp SIL wet some s	T sand		3	28	124 -
- 			27							trace of	clay grey		4	27	123.5 -
- -3 -			26										5	26	123 -
- 3.5										comp wet, g SILT and trace o	rey SAND				122.5 - - - - 122 -
- 4 - - - - 4.5			28 🔺								лау		6	28	121.5 -
- - - - - - - - - - - - - -			27							dense	e to		7	27	121 -
- - - 5.5 -										very de wet, g SILTY S traces	rey SAND				120.5 -
	-	Probable cobbles/ boulders encountered between 5.8 and 6.1 m depth.								clay and occasional and bou	gravel cobbles Ilders				120 -
- 		Hard augering at 6.1 to 7.0 m depth.	Ę	55 ▲						(TILI	L)		8	55	119.5 -
										END OF BOREHO Refusal to advancer 7.0 m below gro	ment of augers at				119-
		on associates i													
				OGG				DRILLING DATE:	6 A	۱ugu	st 2	013			
	CC	onsulting enginee	rs			F	REVIE	WED	BY:	VN	Page 1 of 1				

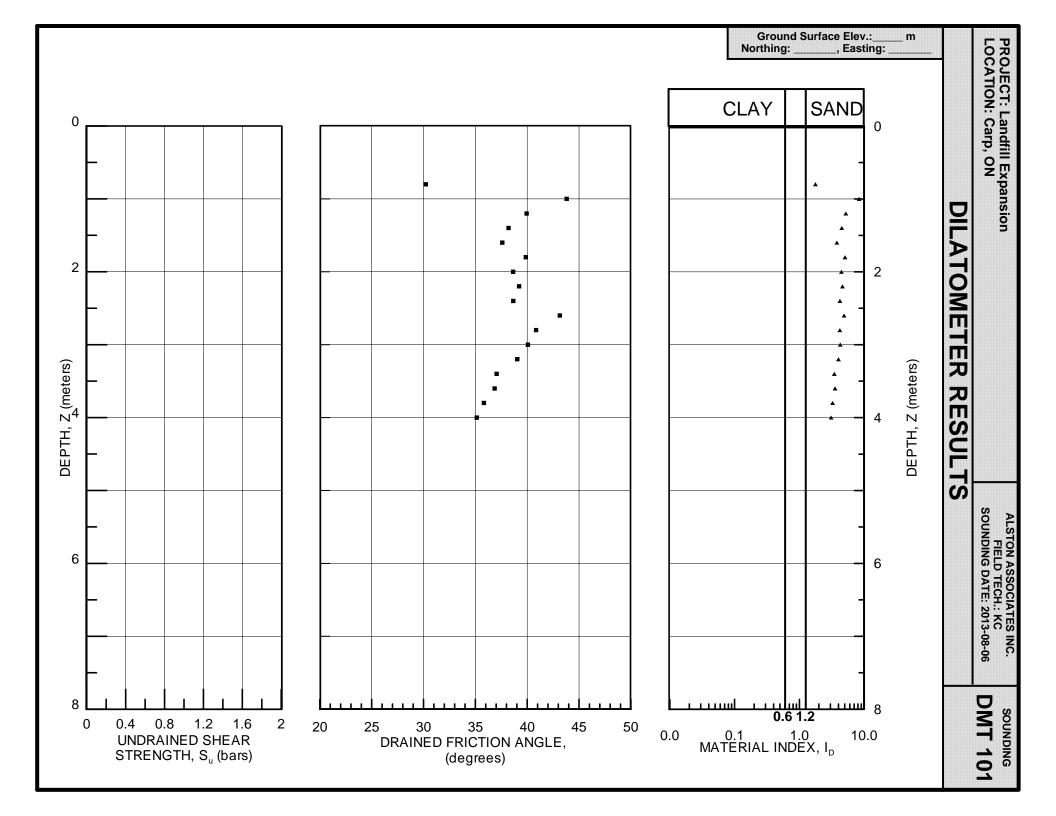
	NT: Waste Manag JECT: Landfill Exp				THOD		_				Epoon Sampling EV. (m) 121.84	BH No.:	8			
	TION: Carp, ON			+	RTHIN					_	ASTING: 346519.626					
		AUGER DRI	VEN		Ν	COR	ING			•	·	HELBY	Π		IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8	ar Strei (kPa) 30 120 J-Value vs/300	0 160 e mm)		PL V			SOIL SYMBOL	SO DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
0.5	Casing Bentonite	Borehole water level measured dry on completion and 4.8 m below ground surface on 9 August 2013.	7	40 60	0 80	5	20 40	<u> </u>	0 80					1		121.5 -
- - 1 - - - 1.5			2			4					blacks trace some or FIL	e to ganics		2	2	121 – - - 120.5 –
-2	Sand		2			5								3 4A	2	120 - - - - - 119.5 -
- 2.5 - 3	diameter)	Hard augering at 3.0 m	29			3				2022 2022 2022 2022 2022 2022 2022 202	compact t damp to mo GRAVELL	oist, brown		4B	29	119-
- 3.5		depth.	42			4				52 052 052052 2002 052 052 2002 052 052	with sor			5	42	- - - - - - - - - - - - - - - - - - -
- 4 4.5		Split spoon bouncing at	42			4				10 - 01 - 02 - 02 - 02 0 - 02 - 02 - 02 0 - 02 - 02	dense, l SAND and trace	GRAVEL		6	42	117.5 -
- - - - - - - - - - - - -		5.0 m depth	5	51 À		4				02022022022 02022022022	END OF BOREHC			7	51	117 -
	alsto	on associates	inc.					OGC	GED B	Y: K	Refusal to advance 5.2 m below gro	ment of augers at	7.4	Augu	ust 2	013
	consulting engineers											1	7 /	Augu	ist 2	013
	CC		R	EVII	EWED	BY:	VN	Page 1 of 1								

	NT: Waste Manag					_	-	_	poon Sampling	DUN	~			
	JECT: Landfill Exp	ansion		PROJE					.EV. (m) 127.44	BH No.:				
	TION: Carp, ON			NORTH			84.789	_	STING: 345922.104		3-10			
SAM		AUGER DRI	VEN		CORI	NG		DYN/	AMIC CONE S	HELBY	Ш.	SPL	_IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8 N (Blov	ar Strength (kPa) 30 120 160 J-Value vs/300mm) 40 60 80	F		C. LL 60 80	SOIL SYMBOL	SO DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
- 0		Borehole cave-in at 2.1				33			150 mm T	OPSOIL	╢	1A		-
- 0.5		m below ground surface on completion.			6				loose moist, t			1B	6	127 -
- 			26		4				SAN compact trace			2	26	126.5 -
1.5											╢			126 -
2			38		15 ●				dense to ve moist to w			3	38	125.5 -
- 2.5			43		16				SANDY trace	SILT		4	43	125 -
-3											┟╨			124.5
- - - 3.5				75	18				very d wet, b SILTY find	rown		5	75	124 -
- - - 4 - -			44		19)						6	44	123.5 -
4.5														123 -
- - - 5 -			17		2	1			den moist ti gre SIL	o wet		7	17	122.5 -
- 									SIL some trace occasional c	sand clay				122 -
-6										,				121.5 -
- - - 6.5 -			37		15 •							8	37	121 -
- 7		Hard augering at 7.0 m depth.												120.5 -
- - 7.5 -									dense, mo SILTY S traces of clay	SAND and gravel				120 -
- 8			47									9	47	119.5 -
									END OF BOREHC Refusal to advance 8.23 m below gr	ment of augers at				
	alsta	on associates	inc.		_, I	LO	GGED E	3Y: K	C	DRILLING DATE:	8 A	Augu	ist 2	013
		onsulting enginee				RE	VIEWE	D BY:	VN	Page 1 of 1				

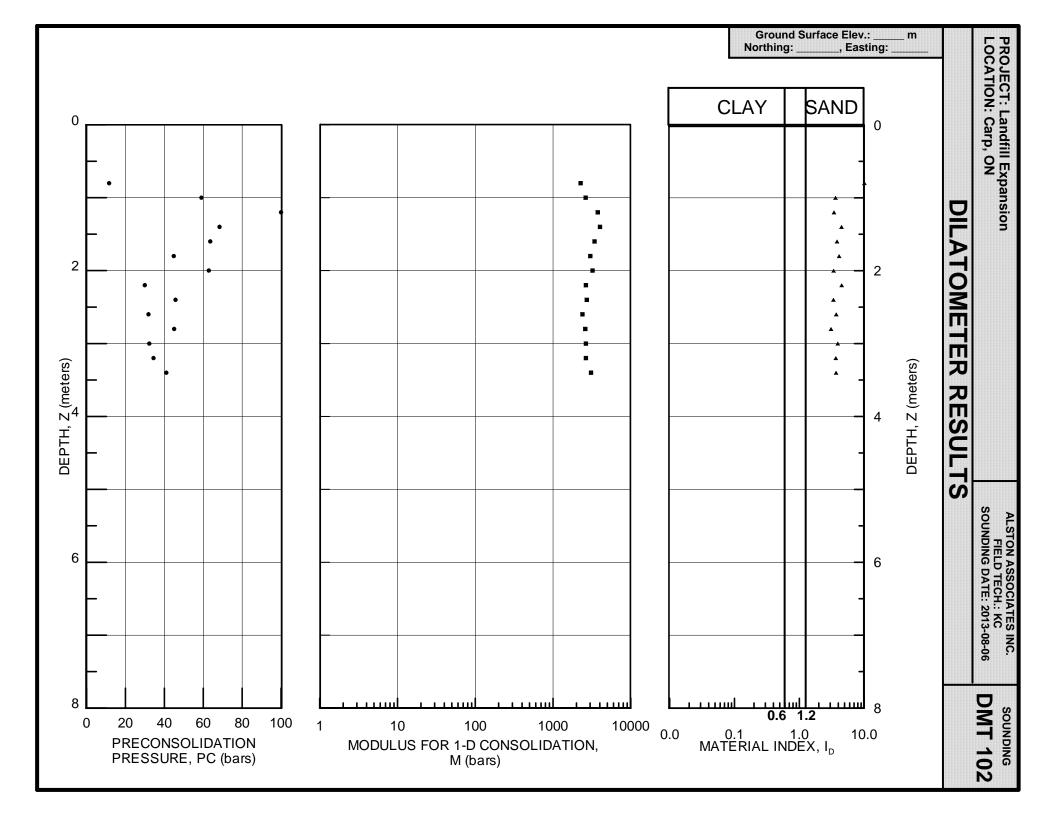
	NT: Waste Manag JECT: Landfill Exp				ETHOD		_				poon Sampling	BH No.:	1	0		
	ATION: Carp, ON			<u> </u>						_	EV. (m) 125.32 ASTING: 346160.219					
	-	AUGER DRI	VEN				RING	5700	_			HELBY			ITS	POON
DEPTH (m)	INSTRUMENTATION DATA		Shea 40 & (Blov	(kPa) 30 12 I-Valu vs/300	ength 20 160		PL \ 20 40		LL	SOIL SYMBOL	SO DESCRI	IL		SAMPLE NO.	SPT(N)	ELEVATION (m)
- 0.5		Borehole dry and open on completion. Contact made with a natural gas pocket at 3.05 m depth, drilling terminated, gas allowed to vent overnight. Augers pulled next day.	6								100 mm black sa loose to c moi fine to medi trace silt and	compact brown ist um SAND s of gravel grey		1A 1B 2 3	6 20	125 - 124.5 - 124 - 124 -
- 2 - 2.5 - 2.5 - 3		Hard augering at 2.1 m depth.	16								compact, m SILTY S trace: clay and (TIL	SAND s of gravel		4		123 – 122.5 –
		on associates	50/12	5 ▲					EED B		END OF BOREHC	DLE			50/ 125	2012
	consulting engineers								WED			Page 1 of 1				

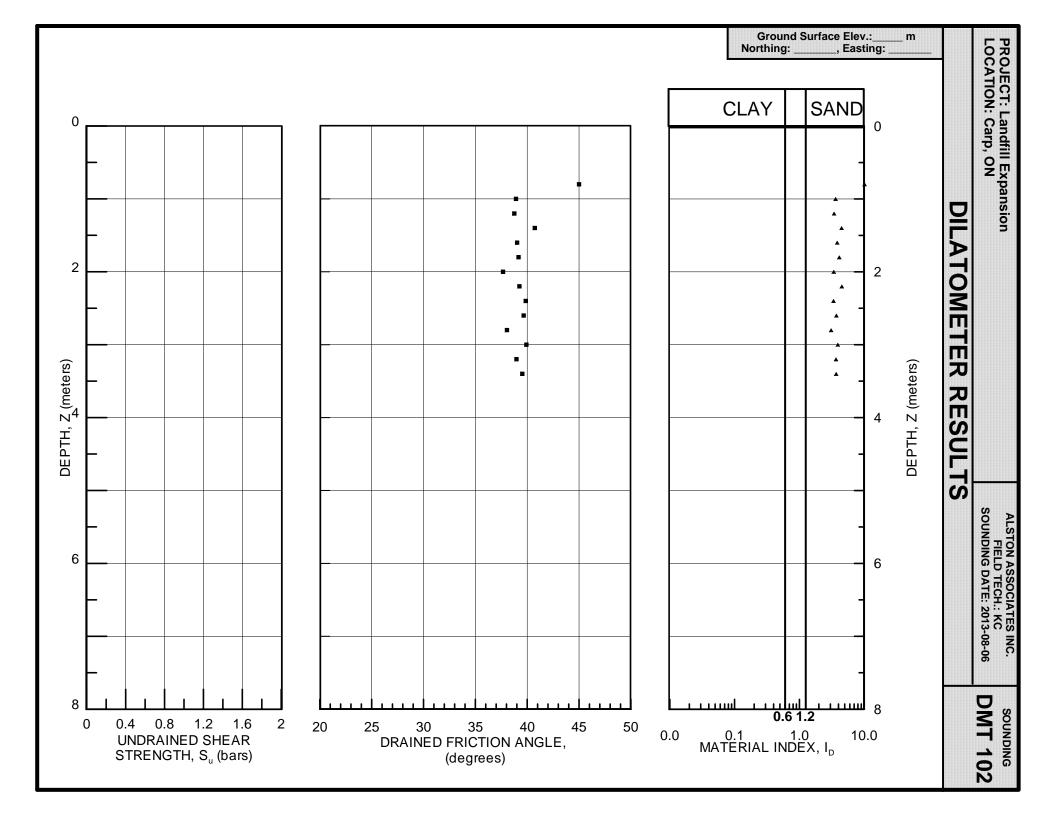
	NT: Waste Manag JECT: Landfill Exp					CHOD					- 1		poon Sampling EV. (m) 125.63	BH No.:	1	1		
	ATION: Carp, ON				<u> </u>						-		STING: 346374.845					
		AUGER DRI	VEN	1	· · · · ·			RING					·	HELBY	$\overline{\mathbb{T}}$			POON
DEPTH (m)		REMARKS	4	08 N Blow	ar Stren (kPa) 30 120 I-Value vs/300r	ngth 160 mm)		PL	W.C.	LL 0 80		SOIL SYMBOL	SO DESCRI		SAMPLE TYPE		SPT(N)	ELEVATION (m)
0 - - - 0.5		Borehole dry and cave- in at 2.3 m below ground surface on completion.		<u> </u>			11 7						200 mm blac	k TOPSOIL		1A 1B	6	125.5 -
- - - - - - - -				17				21					damp, brown			2	17	125 - 124.5 -
- - 1.5 - - - 2		Water strike at 1.5 m depth.		15				19					 loos to com SILTY fine	pact		3	15	124 -
- 2 - - - 2.5				17			1	6					moist to wet,			4	17	123.5 - 123 -
- - -3 - -			24.				1:						grey			5A	24	122.5 -
- 3.5			24					26 •					very stif SILTY (f, grey CLAY		5B	24	122 -
-4			23				10				272 - Yord & The 28					6	23	121.5 -
- 4.5 - - - - 5		Hard augering at 4.6 m depth.			94/	/225	9				- 1 - 2 / 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					7	94/ 225	121 -
- - - - 5.5											21 - 22 - 1 - 22 - 1 - 24		very de moist,					120.5 -
- - - 6											22 T 1 2 2 1 1 2 2		SILTY S trace and gr	SAND clay avel		-		120 - 119.5 -
- - - 6.5						94	5				1.1221.1221.12		occasional and bou (TIL	ulders		8	94	119-
- - - - -											121 12221							118.5 -
- - 7.5 -			50	/12	5 🔺						1.261 (1.272 (1.1.27					9	50/ 125	118 -
-8											17771							117.5 -
													END OF BOREHC Refusal to advance 8.23 m below gr	ment of augers at				
	alsto	on associates	inc	с.			-	1	LOG	GED I	BY:	KC		DRILLING DATE:	7 /	Augi	ust 2	013
	consulting engineers							F	REVI	EWE	DВ	SY: '	VN	Page 1 of 1		-		

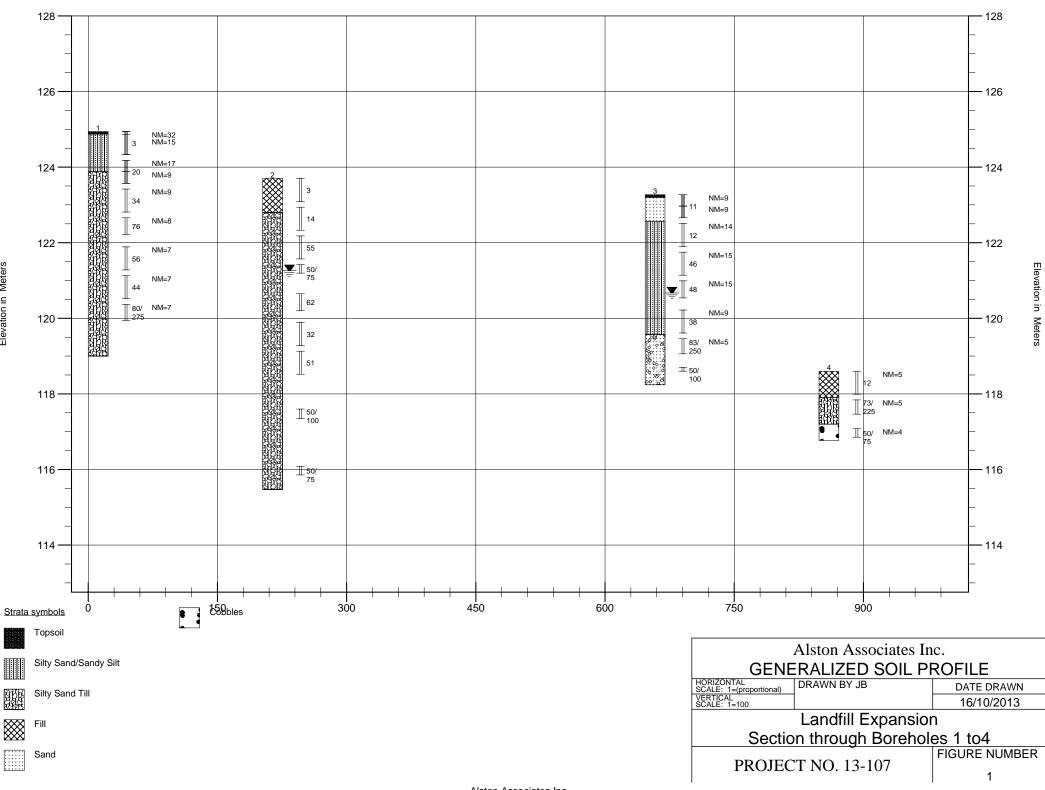

		te Manag ndfill Exp										Epoon Sampling EV. (m) 121.96	BH No.:	1	2		
	TION: C		ansion		_						_	ASTING: 346499.092					
			AUGER DR	VEN				RING			•		HELBY	$\overline{\mathbb{T}}$		IT S	POON
	INSTRUM		REMARKS	She 40 (Blc	N-Vali ows/30	ength) 20 160 ue 0mm)		PL	W.C. 1			SO DESCRI	IL				r
(iii) HLdag 0 - 0.5 - 1 - 1.5 - 2.5 - 3 - 3.5 - 4 - 4.5 - 5 - 5.5			Borehole water level measured 2.84 m below ground surface on completion of drilling and 2.8 m below ground surface on 8 and 9 August 2013.	40 (Blc 20 3	(kPa 80 1: N-Vali N-Vali 40 6	ength) 20 160		PL	W.C. I			SO	errown		2 3 4 SAMPLE NO. 7	(N)LdS 3 5 47 3 29 13 7	(È) NOLLEY 121.5 - 121.5 - 121.5 - 120.5 - 120
- 7.5			Hard augering at 7.3 m depth. Split spoon bouncing		25		6					very loose hard, g SILTY (some sand a (TILI END OF BOREHC Refusal to advancer 7.9 m below gro	DLAY and gravel L) DLE ment of augers at		9	2 50/ 25	116 - 115.5 - 115 - 114.5 -
	alston associates inc. consulting engineers								OGGE				DRILLING DATE:	7 A	Augu	ist 2	013
1					F		NED	BY:	VN	Page 1 of 1							

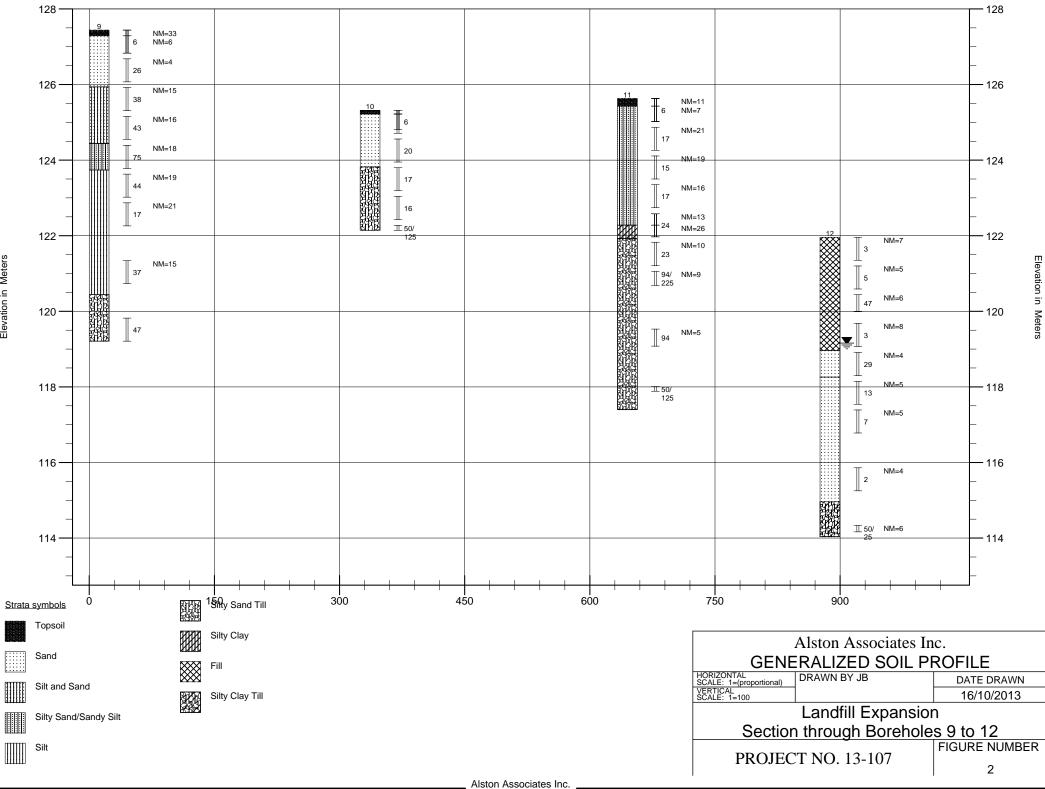

	NT: Waste Manag JECT: Landfill Exp				HOD								on Testing . (m) 121.96	CPT No).:	12	: A	
	TION: Carp, ON			NOF	THIN	IG:	501	6144	4.28	32	-		ING: 346499.092	PROJECT NO.:				
SAM	PLE TYPE	AUGER DR	IVEN				COR	ING				DYNA	MIC CONE	HELBY	\square	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	4 Eq	Shear S (kl 0 80 Juivaler Blows/ 0 40	Pa) <u>120 1</u> nt N-Va 300mr	● I60 alue n)		PL \ 0 4()	SOIL SYMBOL	SO DESCRI		SAMPLE TYPE	SAMPLE NO.	DCPT(N)	ELEVATION (m)
- 0.5 - 1 - 1.5													Straight to 1.5 m	auger depth				121.5 121 120.5
- 2			5 • 3														 5 3	12(119.5
- 3			▲ 4 ▲ 7 ▲ 6														4 7 6	119
- 3.5 - 4 - 4.5			▲ 4 ▲ 4 ▲ 6										Dynai Con				4 4 6 10	118
- 5			7 3 4 5										Penetra Tes				7 3 4	11: 116.
- 6 - 6.5			g	19													5 9 19 34	110 115.(
- 7 - 7.5				15 19													15 19 26	11: 114.:
													END OF DYNAMIC PENETRATION T					
	alsto	on associates	inc	∟⊥ ⊃.			1		OGC	GED	BY	 ′: КС	>	DRILLING DATI	 E: 7 A	L Augu	l Ist 2	013
	consulting engineers											BY: 1		Page 1 of 1	. /			

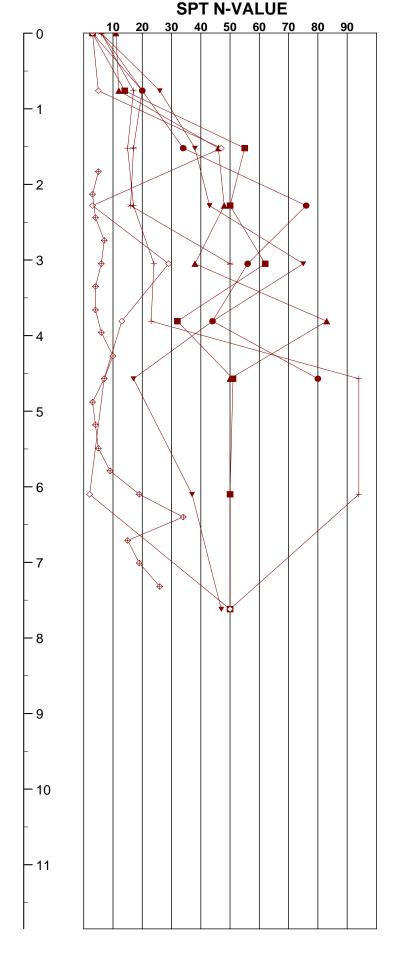
DMT 101


Z	Α	В	С	P0	P1	P2	U0	ED	ID	KD	GAMMA	SV'	PC	OCR	KO	PHI	М	Su (BAR)	SOIL TYPE
(M)	(BAR)			(T/M3)	(BAR)	(BAR)			(PHI)	(BAR)	f(SV', Kd)								
0.8	1.20	4.00	0.00	1.34	3.70	0.00	0.000	82	1.77	7.87	1.7	0.17	3.0	17.56	1.32	30	186		SANDY SILT
1.0	1.50	12.00	0.00	1.25	11.70	0.00	0.000	363	8.34	6.10	1.8	0.21	3.0	14.72	0.08	44	751		SAND
1.2	2.80	15.50	0.00	2.44	15.20	0.00	0.000	443	5.22	10.07	1.9	0.24	9.3	38.31	1.17	40	1110		SAND
1.4	3.00	15.00	0.00	2.68	14.70	0.00	0.000	417	4.49	9.57	1.9	0.28	9.7	34.75	1.23	38	1027		SAND
1.6	4.80	20.80	0.00	4.28	20.50	0.00	0.000	563	3.79	13.40	2.0	0.32	21.1	66.18	1.72	38	1563		SAND
1.8	4.60	24.00	0.00	3.91	23.70	0.00	0.000	687	5.07	10.90	2.0	0.36	16.0	44.61	1.28	40	1773		SAND
2.0	5.20	24.80	0.00	4.50	24.50	0.00	0.000	694	4.45	11.31	2.0	0.40	19.0	47.85	1.41	39	1816		SAND
2.2	6.20	30.00	0.00	5.29	29.70	0.00	0.000	847	4.62	12.10	2.0	0.44	23.8	54.45	1.47	39	2271		SAND
2.4	7.50	34.00	0.00	6.45	33.70	0.00	0.000	945	4.22	13.55	2.0	0.48	32.2	67.58	1.68	39	2636		SAND
2.6	6.80	34.00	0.00	5.72	33.70	0.00	0.000	971	4.89	11.09	2.0	0.52	23.8	46.11	0.87	43	2523		SAND
2.8	7.40	33.5*	0.00	6.37	33.20	0.00	0.000	931	4.21	11.49	2.0	0.56	27.4	49.31	1.26	41	2450		SAND
3.0	7.00	32.0*	0.00	6.03	31.70	0.00	0.000	891	4.26	10.15	2.0	0.59	23.1	38.91	1.17	40	2239		SAND
3.2	7.30	32.0*	0.00	6.34	31.70	0.00	0.000	880	4.00	10.02	2.0	0.63	24.0	37.95	1.23	39	2201		SAND
3.4	7.50	30.0*	0.00	6.65	29.70	0.00	0.000	800	3.46	9.89	2.0	0.67	24.9	37.06	1.33	37	1992		SAND
3.6	7.40	30.0*	0.00	6.55	29.70	0.00	0.000	803	3.54	9.20	2.0	0.71	23.0	32.26	1.25	37	1950		SAND
3.8	7.70	29.5*	29.5*	6.89	29.20	0.00	0.000	774	3.24	9.17	2.0	0.75	24.1	32.07	1.30	36	1877		SILTY SAND
4.0	7.80	29.0*	0.00	7.02	28.70	0.00	0.000	752	3.09	8.88	2.0	0.79	23.8	30.15	1.29	35	1803		SILTY SAND

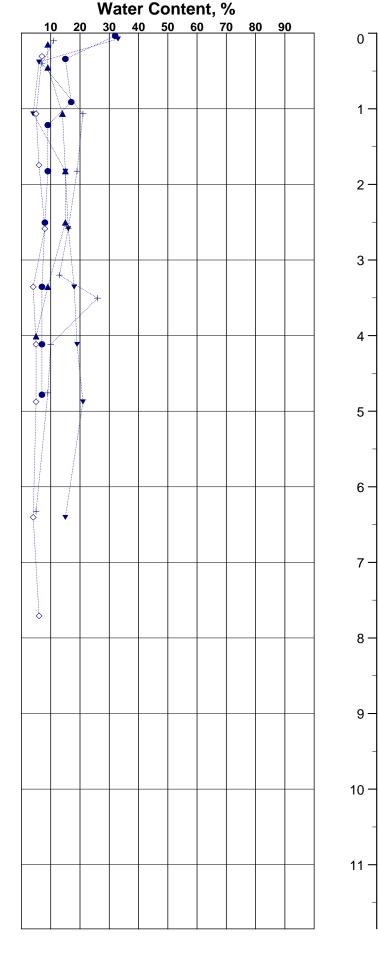

* B Reading limited by equipment control



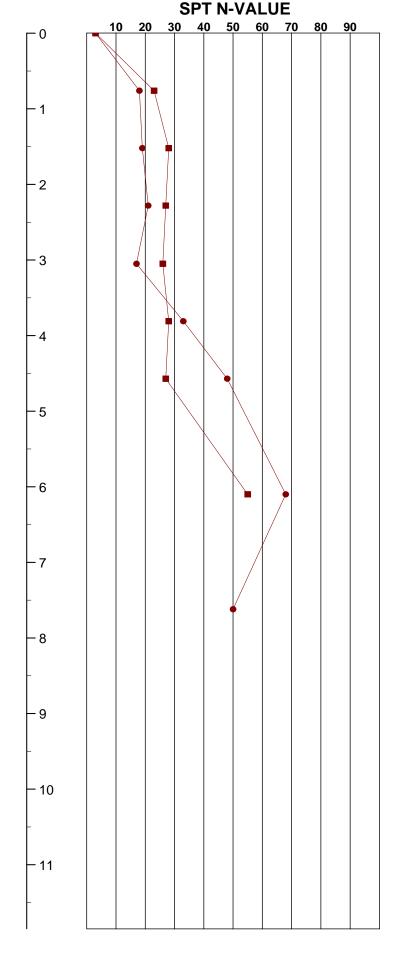

Z	А	В	С	P0	P1	P2	U0	ED	ID	KD	GAMMA	SV'	PC	OCR	KO	PHI	М	Su (BAR)	SOIL TYPE
(M)	(BAR)			(T/M3)	(BAR)	(BAR)			(PHI)	(BAR)	f(SV', Kd)								
0.8	3.20	26.00	0.00	2.31	25.68	0.00	0.000	811	10.10	13.60	1.9	0.17	11.6	68.08	0.38	45	2263		SAND
1.0	6.80	28.00	0.00	5.99	27.68	0.00	0.000	752	3.62	28.64	2.0	0.21	59.1	282.19	3.48	39	2630		SAND
1.2	9.80	38.50	0.00	8.62	38.18	0.00	0.000	1026	3.43	34.27	2.2	0.25	100.0	397.66	4.17	39	3760		SAND
1.4	9.00	42.00	0.00	7.60	41.68	0.00	0.000	1182	4.48	25.89	2.2	0.29	68.3	232.74	3.01	41	4021		SAND
1.6	9.00	38.00	0.00	7.80	37.68	0.00	0.000	1037	3.83	23.23	2.2	0.34	63.6	189.25	2.82	39	3419		SAND
1.8	8.00	35.50	0.00	6.88	35.18	0.00	0.000	982	4.11	18.19	2.2	0.38	44.9	118.63	2.21	39	3011		SAND
2.0	9.80	38.20	0.00	8.63	37.88	0.00	0.000	1015	3.39	20.54	2.2	0.42	62.9	149.60	2.58	38	3228		SAND
2.2	7.20	34.00	0.10	6.11	33.68	0.33	0.000	956	4.51	13.30	2.0	0.46	30.0	65.24	1.61	39	2649		SAND
2.4	9.00	35.00	0.30	7.95	34.68	0.53	0.000	927	3.36	15.85	2.2	0.50	45.8	91.18	1.88	40	2723		SAND
2.6	7.80	32.50	0.50	6.82	32.18	0.73	0.000	880	3.72	12.60	2.0	0.54	31.8	58.84	1.50	40	2392		SAND
2.8	9.50	35.00	0.60	8.48	34.68	0.83	0.000	909	3.09	14.54	2.2	0.58	45.1	77.30	1.84	38	2595		SILTY SAND
3.0	8.50	36.50	0.10	7.35	36.18	0.33	0.000	1000	3.92	11.76	2.2	0.63	32.2	51.54	1.38	40	2654		SAND
3.2	9.00	37.00	0.10	7.85	36.68	0.33	0.000	1000	3.67	11.76	2.2	0.67	34.4	51.58	1.45	39	2654		SAND
3.4	10.20	42.00	0.10	8.86	41.68	0.33	0.000	1139	3.70	12.49	2.2	0.71	41.0	57.81	1.50	40	3086		SAND



Elevation in Meters

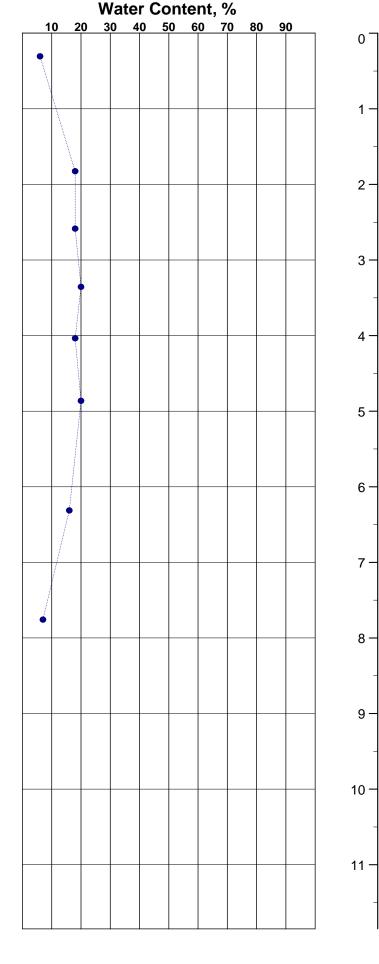


Elevation in Meters

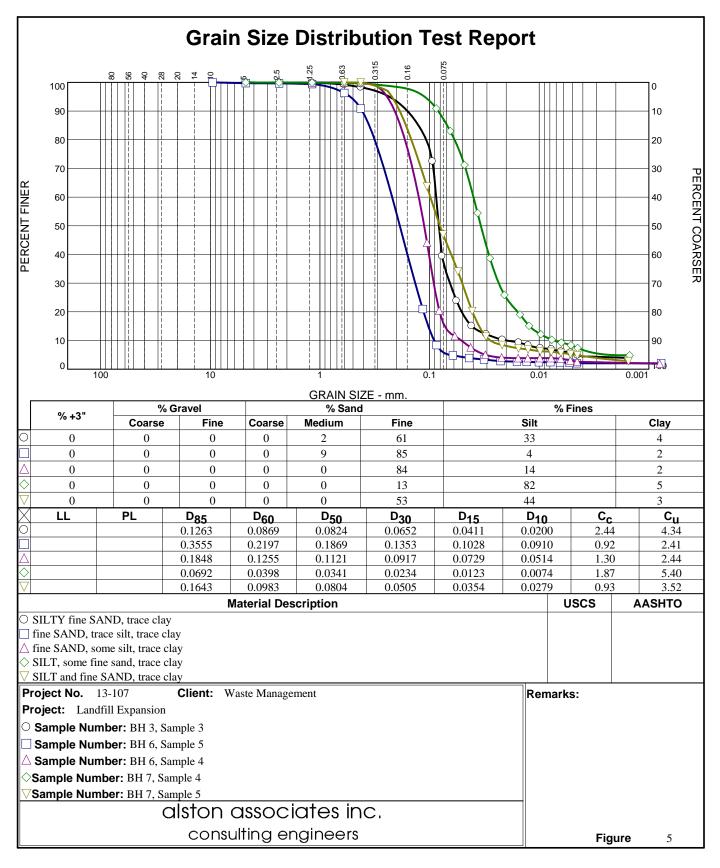


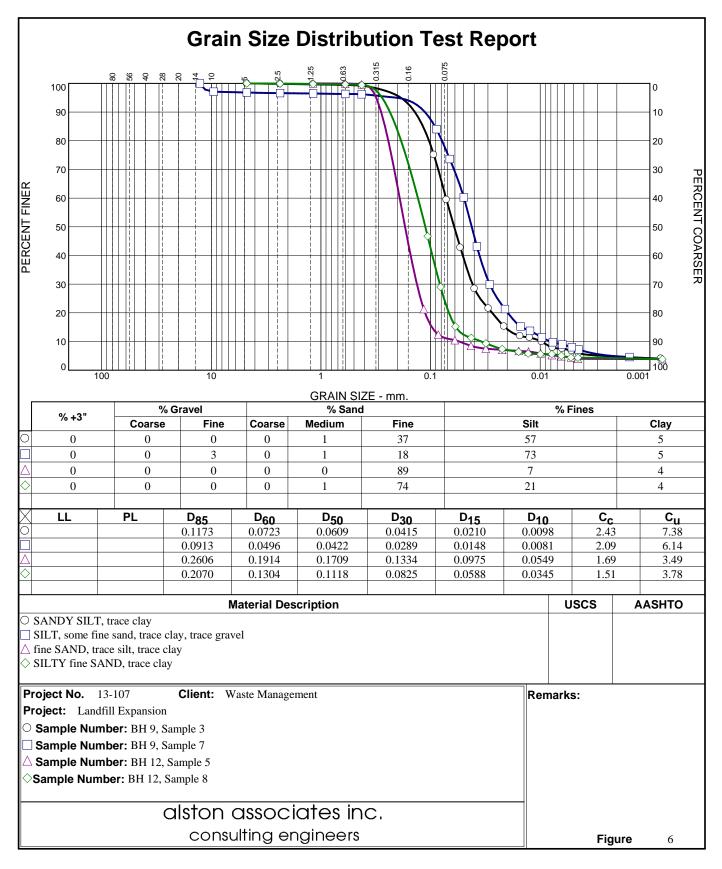
Key	to	Borings

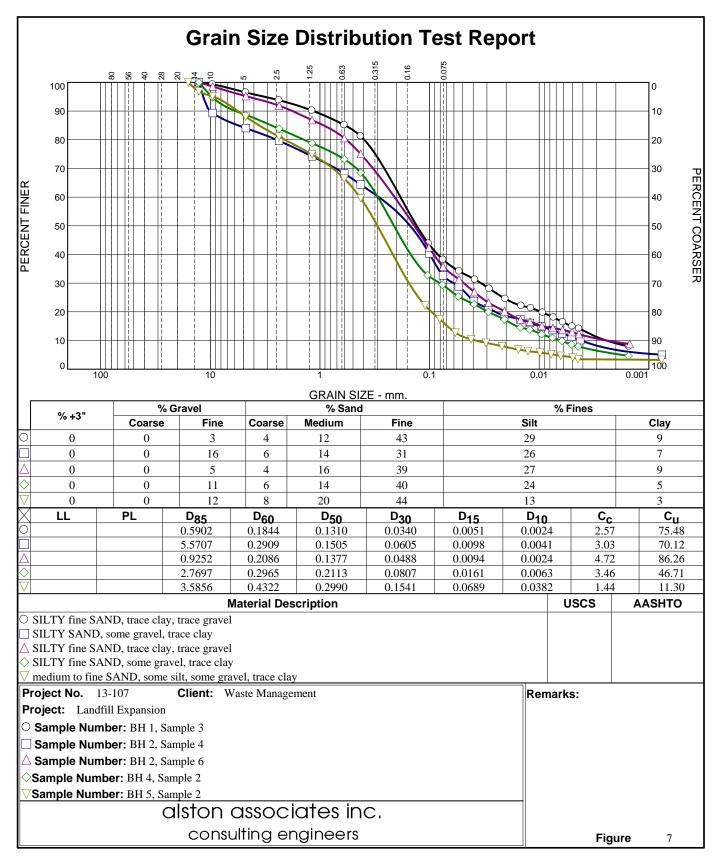
•	1		3	* 1()	12
	2	▼	9	+ 11	\$	12A

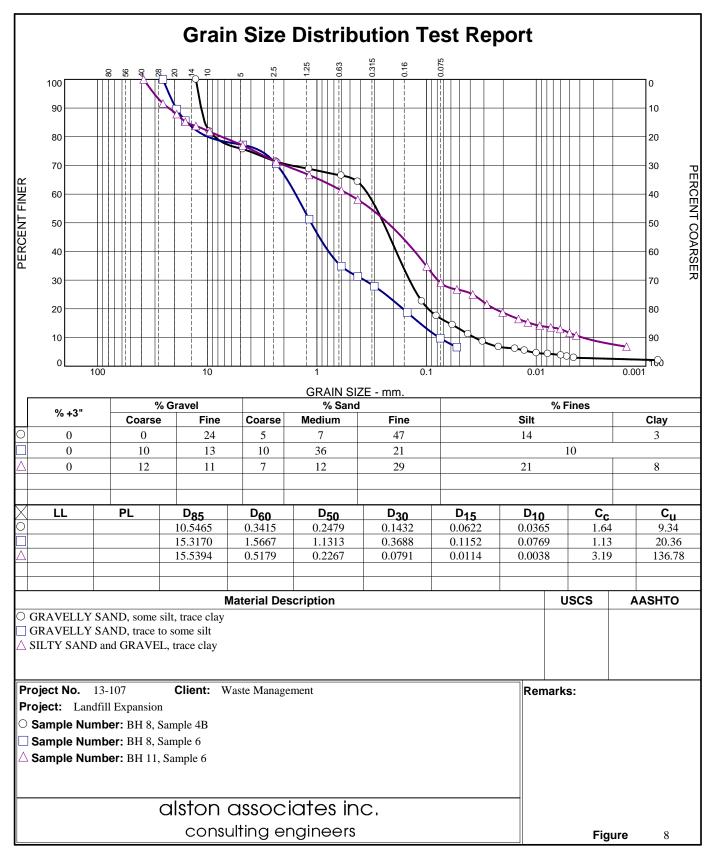


Alston Associates Inc.					
Landfill Expansion					
Vertical Scale: 1 to 50	Figure: 3				




- 6
- **7**


Alston Asso	ciates Inc.
Landfill Ex	pansion
Vertical Scale: 1 to 50	Figure: 4


Tested By: <u>○ MA/AM</u> <u>□ MA/TA</u> <u>△ TA/AR</u> <u>◇ AR/AM</u> <u>∨ MP/AM</u> Checked By: <u>JB</u>

Tested By: <u>○ TS/AR □ MA/AM △ TS/TA ◇ MA/TA</u> Checked By: <u>JB</u>

Tested By: <u>OMA/AM OMA/TA AMP/AM OMA/AM OMA/TA</u> Checked By: JB

Tested By: <u>OMA/TA OMA AR/AM</u> Checked By: <u>JB</u>

APPENDIX 3

ADDENDUM TO REPORT, GEOTECHNICAL INVESTIGATION, WASTE MANAGEMENT, CARP ROAD, CARP, ONTARIO REF. NO. 13-107A, DATED DECEMBER 16, 2013

Ref. No. 13-107A 16 December 2013

AECOM Canada 300 Town Centre Blvd. Markham, Ontario L3R 5Z6

Distribution

1 Copy - AECOM Canada 1 Copy - Alston Associates Inc.

Ref. No. 13-107A

CONTENTS

Page No.

1.0	INTRODUC	TION		 	 	 	 	 			. 1
2.0	2.1 Muni2.2 Land	N OF SOIL PA cipal Waste M fill Liner	laterial .	 	 	 	 	 •••	· ·	•••	. 2 . 3
3.0	3.1 Slope	DF ANALYSE e Stability ement		 	 	 	 	 			. 4

APPENDICES

SLOPE STABILITY ANALYSIS, STATIC CONDITION, 1 YEAR OLD FILL	Appendix 'AA'
SLOPE STABILITY ANALYSIS, STATIC CONDITION, 16 YEARS OLD FILL	Appendix 'BB'
SLOPE STABILITY ANALYSIS, SEISMIC LOAD, 1 YEAR OLD FILL	Appendix 'CC'
SLOPE STABILITY ANALYSIS, SEISMIC LOAD, 16 YEARS OLD FILL	Appendix 'DD'
SETTLEMENT ANALYSIS, NORTH-SOUTH SECTION	Appendix 'EE'
SETTLEMENT ANALYSIS, EAST-WEST SECTION	Appendix 'FF'

1.0 INTRODUCTION

A geotechnical investigation was carried out at the proposed landfill development site which is located immediately north of a closed landfilled site which was operated by Waste Management on the west side of Carp Road and north of Highway 417 in Carp, Ontario. The geotechnical investigation study presents the results of borehole explorations, test pit excavations and soundings put down at the site to determine in situ soil parameters for of the landfill facility; the results of the study have been presented in the companion report reference 13-107, date 3 December 2013. Analyses carried out in that report with regards to the stability of the side slopes of the completed landfill and the settlement characteristics of the supporting soil profile were made on the basis of conventional (conservative) parameters for shear strength and unit weight of the landfill materials and were intended to support the conceptual design of the landfill. Facility design has now progressed from conceptual to the detailed phase. This report addendum updates the geotechnical design of the landfill.

It is the intention of Waste Management that the municipal waste materials be compacted to a dense condition, similar to that achieved on other current landfill sites in Ontario, which are operated by Waste Management. Selection of soil parameters for assessment of stability presented in this report is based on the results of the testing work carried out to determine the shear strength of samples of densely compacted municipal waste material on samples excavated from the Richmond Landfill site in Napanee, Ontario.

This study presents the results of detailed analysis of side slope stability for both static and seismic loading as well as anticipated settlement which will occur under the completed landfill site.

2.0 SELECTION OF SOIL PARAMETERS

2.1 <u>Municipal Waste Material</u>

Recent work carried out on active landfill sites shows that municipal waste can be compacted to a density which was not achievable prior to the development of the current generation of compaction equipment. Denser compaction of the waste material has resulted in a higher unit weight of the fill, and improved shear strength characteristics. Work carried out to determine the geotechnical parameters of landfilled municipal waste excavated from the Waste Management Richmond Landfill site shows the following representative soil parameters. ^{(1) (2)}

Age of Municipal Solid	Cohesion Intercept C'	Effective Angle of
Waste	(kPa)	Internal ø'
6 months old	27	26°
1 year old	32	28°
16 years old	9	37°

Records for the Richmond Landfill indicate that the representative unit weight of the compacted waste, including daily cover, is 14 kN/m³.

Reference to the foregoing test results shows that in general, the shear strength characteristics of the landfilled municipal waste increase with time. This is attributed to a denser state of packing of the materials and increased interlock between rigid particles included in the waste fill.

Comparison was made of the recorded results with data reported by other researchers the test data for the Richmond site have been shown to be reasonably consistent with test results reported by others. ^{(3) (4)}

2.2 Landfill Liner

It is proposed that the landfill liner will consist of a double composite liner as required by the Ontario Ministry of the Environment. This consists of the following components:

- Landfill leachate collection system embedded in 0.3 m thick layer of granular material;
- Needle punched nonwoven geotextile;
- 1.5 mm thick HDPE liner;
- 0.75 *m* thick engineered clay liner;
- Needle punched nonwoven geotextile;
- 0.3 m thick granular secondary leachate collection layer;
- Needle punched nonwoven geotextile;
- 2 mm thick HDPE liner;
- 0.75 m thick engineered clayey secondary liner;
- 1 m thick attenuation layer consisting or natural of constructed low permeability soil.

In order to enhance the adhesion between the HDPE liner and both the overlying nonwoven geotextile, as well as the underlying engineered clayey liner, it is proposed that the HDPE be a textured material. Reference to published literature shows that the friction angle between non-woven geotextile and textured HDPE ranges from 32 to 38°. The friction angle between textured HDPE and compacted clay has been found to be more than $40^{\circ} {}^{(5)} {}^{(6)} {}^{(7)} {}^{(8)}$. The friction angle of the granular material in the drainage layer is expected to exceed 35° for hard, durable stone.

On the basis of the given data, the controlling shear strength parameters of the composite double liner system are governed by the properties of the compacted clay layer.

On the basis of these data a conservative effective friction angle of 28° has been selected for static stability analysis; an undrained shear strength of the compacted clay layer of 120 kPa is of the liner is assumed, this value will be part of the specification for liner construction.

2.3 Native Soil Profile

The soil parameters for the native soil layers have been determined on the basis of laboratory and in situ test results. These are tabulated below.

Soil Unit	Unit Weight kN/m ³	Cohesion Intercept C' (kPa)	Effective Angle of Internal Friction ø' °	Constrained Modulus MPa
Compact silty sand	22	Nil	38°	110
Silty sand till	22.5	Nil	40°	350

3.0 RESULTS OF ANALYSES

3.1 Slope Stability

An analysis has been carried out with regards to the stability of the side slopes of the completed landfill using the soil parameters given in Section 2 of this Addendum Report. Those results show a factor of safety with respect to global shear failure of more than 2 for both 1 year old and 16 year old municipal waste. The analysis results are attached in

Appendices 'AA' and 'BB', respectively. This exceeds the Ministry of the Environment requirement value of 1.5 and is satisfactory.

A seismic load of 0.42 g has been adopted for analysis of slope stability under seismic loads. For this analysis an undrained shear strength of the clay liner composite of 120 kPa has been adopted. The results of the stability analysis for the 1 year old and 16 year old waste are given in Appendices 'CC' and 'DD', respectively. The results of analysis show a factor of safety of more than 1.1 which is satisfactory.

3.2 Settlement

The settlement of the base of the liner under the full loads of the landfilled municipal waste have been calculated on the basis of deformation modulus values measured in the course of undertaking DMT soundings. The results of the analyses show estimated settlement in both north-south and east-west directions are attached in Appendices 'EE' and 'FF'. These analyses show that the maximum deformation of the landfill base under full load is expected to be in the range 25 to 30 mm. The calculated settlement profile beneath the landfill is given in Page 5 of each reported analysis.

References

- 1. Alston Associates Inc. (2003), "Results of Direct Shear Tests carried out on Refuse Material, Richmond Landfill" Report to Canadian Waste Services Inc.
- 2. Alston Associates Inc. (2004) Addendum to 2003 report.
- 3. Landva AO and Clark JI (1990) "Geotechnics of Waste Fill" Geotechnics of Waste Fill Theory and Practice, ASTM STP 1070
- 4. Reddy KR, Hettiarachi H, Gangathulasi J, Bogner JE (2011) "Geotechnical Properties of Municipal Solid Waste at Different Phases of Biodegredation" Waste Management, Elsevier Ltd.
- 5. Kontsouraris M Sandri D Swan R (1998) "Soil interaction of Geotextiles and Geogrids" Sixth International Conference on Geosynthetics
- 6. Hoechst Celanese Corporation "Soil/Geosynthetic Interface Friction by Direct Shear", Tech Note 006-90
- Bhatia SK Kasturi G Comparison of PVC and HDPE Geomembranes (interface friction performance) Department of Civil and Environmental Engineering, Syracuse University report for PVC Geomembrane Institute
- 8. Stark TD Williamson TA Eid HT (1996) "HDPE Geomembrane/Geotextile Interface Shear Strength" ASCE Journal of Geotech Engineering) Vol. 122, No. 3

APPENDIX 'AA'

CA/KC

Slope stability analysis

Input data

Project

Task :13-107 Carp Landfill DevelopmentDescription :Slope Stability Analysis - south to north, center of pile - (12 month old municipal waste)Author :CA/KCDate :2013-08-29

Settings

Standard - safety factors **Stability analysis**

Verification methodology : Safety factors (ASD)

Safety factors						
	Permanent design situation					
Safety factor :	SF _s =	1.50 [[-]			

Interface

No.	Interface location	Coordinates of interface points [m]						
NO.		x	z	x	z	x	z	
		0.00	15.00	2.35	14.97	15.00	17.50	
		25.00	17.50	30.00	16.50	40.00	18.50	
		45.00	18.50	50.00	17.50	60.00	19.87	
1		130.00	36.50	280.00	44.50	430.00	36.50	
	1	515.26	17.55	520.00	16.50	522.00	17.50	
		524.00	17.50	540.00	12.50	542.39	11.74	
		542.41	11.73	580.00	11.50			
		60.00	19.87	65.00	18.50	505.00	15.50	
2		515.26	17.55					
		2.35	14.97	40.00	14.50	103.00	15.50	
0		103.11	15.61	193.33	14.83	200.00	14.00	
3		256.96	14.28	374.19	13.27	400.00	12.50	
		500.00	12.00					
		0.00	13.32	60.00	13.32	280.00	7.95	
4		500.00	12.00	542.41	11.73			
-		0.00	11.62	60.00	11.62	280.00	6.15	
5		500.00	5.00	580.00	5.00			

Soil parameters - effective stress state

No.	Name	Pattern	Фef [°]	c _{ef} [kPa]	γ [kN/m ³]
1	Compact Silty Sand		38.00	0.00	22.00
2	Silty Sand Till		40.00	0.00	22.50

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com] www.gtscad.com] 1

CA/KC

1	No.	Name	Pattern	Фef [°]	c _{ef} [kPa]	γ [kN/m ³]
	3	Clay Liner		28.00	0.00	19.50
	4	Waste		28.00	30.00	14.00

Soil parameters - uplift

No.	Name	Pattern	γ̃sat [kN/m ³]	γ _s [kN/m³]	n [-]
1	Compact Silty Sand		22.00		
2	Silty Sand Till		22.50		
3	Clay Liner		19.50		
4	Waste		14.00		

Soil parameters

Compact Silty Sand Unit weight : Stress-state : Angle of internal friction : Cohesion of soil : Saturated unit weight :	$effectiv \phi_{ef} = c_{ef} =$	22.00 kN/m ³ e 38.00 ° 0.00 kPa 22.00 kN/m ³	
Silty Sand Till			
Unit weight :	γ =	22.50 kN/m ³	
Stress-state :	effective		
Angle of internal friction :	φ_{ef} =	40.00 °	
Cohesion of soil :	c _{ef} =	0.00 kPa	
Saturated unit weight :	γ _{sat} =	22.50 kN/m ³	
Clay Liner			
Unit weight :	γ =	19.50 kN/m ³	
Stress-state :	effective		
Angle of internal friction :	$\varphi_{ef} =$	28.00 °	
Cohesion of soil :		0.00 kPa	
Saturated unit weight :		19.50 kN/m ³	

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com] www.gtscad.com]

CA/KC

Wasle				
Unit weight :	γ =	14.00 kN/m ³		
Stress-state :	effectiv	effective		
Angle of internal friction :	φ_{ef} =	28.00 °		
Cohesion of soil :	01	30.00 kPa		
Saturated unit weight :	γ _{sat} =	14.00 kN/m ³		

Rigid bodies

No.	Name	Sample	γ [kN/m ³]
1	Bedrock		24.00

Assigning and surfaces

No	Surface position	Coordinates of surface points [m]			[m]	Assigned
No.	Surface position	x	z	x	z	soil
1		65.00	18.50	505.00	15.50	Waste
		515.26	17.55	430.00	36.50	Wasie
		280.00	44.50	130.00	36.50	
		60.00	19.87			
		542.41	11.73	542.39	11.74	Clay Liner
		540.00	12.50	524.00	17.50	
		522.00	17.50	520.00	16.50	
		515.26	17.55	505.00	15.50	
		65.00	18.50	60.00	19.87	
		50.00	17.50	45.00	18.50	
2		40.00	18.50	30.00	16.50	
	· · · · · ·	25.00	17.50	15.00	17.50	
		2.35	14.97	40.00	14.50	
		103.00	15.50	103.11	15.61	
		193.33	14.83	200.00	14.00	
		256.96	14.28	374.19	13.27	
		400.00	12.50	500.00	12.00	
		60.00	13.32	280.00	7.95	Compact Silty Sond
		500.00	12.00	400.00	12.50	Compact Silty Sand
		374.19	13.27	256.96	14.28	
3		200.00	14.00	193.33	14.83	
		103.11	15.61	103.00	15.50	
		40.00	14.50	2.35	14.97	
		0.00	15.00	0.00	13.32	
		60.00	11.62	280.00	6.15	Cilty Cand Till
		500.00	5.00	580.00	5.00	Silty Sand Till
		580.00	11.50	542.41	11.73	
4		500.00	12.00	280.00	7.95	
		60.00	13.32	0.00	13.32	
		0.00	11.62			

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com] www.gtscad.com] 3

13-107 Carp Landfill Development

CA/KC

Surface position	Coordinates of surface points [m]				Assigned
Surface position	x	z	x	z	soil
5	500.00	5.00	280.00	6.15	Bedrock
	60.00	11.62	0.00	11.62	Bearock
	0.00	0.00	580.00	0.00	
	580.00	5.00			
	Surface position	Surrace position x 500.00 60.00 0.00 0.00	Surface position x z 500.00 5.00 60.00 11.62 0.00 0.00	Surface position x z x 500.00 5.00 280.00 60.00 11.62 0.00 0.00 0.00 580.00	x z x z 500.00 5.00 280.00 6.15 60.00 11.62 0.00 11.62 0.00 0.00 580.00 0.00

Water

Water type : GWT

No	No. GWT location	Coordinates of GWT points [m]						
NO.		x	z	x	z	x	z	
	1	0.00	14.48	0.38	14.48	44.90	14.72	
		50.10	17.29	60.15	19.75	65.91	20.01	
1		504.45	16.99	516.79	16.99	519.80	16.26	
		542.25	11.29	579.35	10.80	580.00	10.79	

Tensile crack

Tensile crack not inputted.

Earthquake

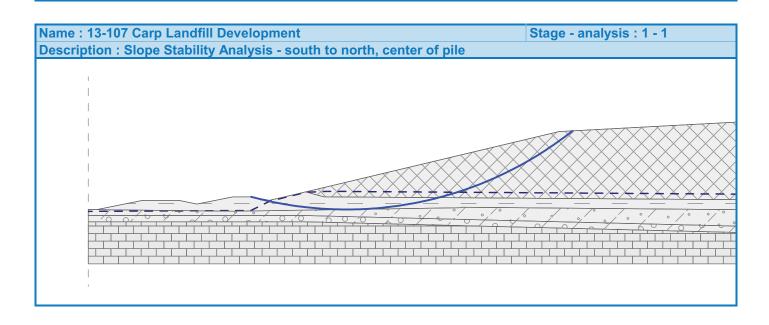
Earthquake not included.

Settings of the stage of construction

Design situation : permanent

Results (Stage of construction 1)

Analysis 1


Circular slip surface

Slip surface parameters						
Contor	x =	71.27	[m]		α ₁ =	-15.16 [°]
Center :	z =	115.57	[m]	Angles :	α ₂ =	38.35 [°]
Radius :	R =	100.57	[m]			
The slip surface after optimization.						

Segments restricting slip surface

No.	First point		Second point		
NO.	x [m]	z [m]	x [m]	z [m]	
1	133.31	36.84	132.71	36.53	
2	132.80	36.54	130.07	36.41	
3	132.53	36.90	50.65	17.45	
4	51.04	17.46	49.94	17.54	

Slope stability verification (Bishop)							
Sum of active forces :	F _a =	1785.39	kN/m				
Sum of passive forces :	F _p =	4991.08	kN/m				
Sliding moment :	M _a =	179556.35	kNm/m				
Resisting moment :	M _p =	501952.96	kNm/m				
Factor of safety = 2.80 > 1.50 Slope stability ACCEPTABLE							

APPENDIX 'BB'

Slope stability analysis

Input data

Project

Task :13-107 Carp Landfill DevelopmentDescription :Slope Stability Analysis - south to north, center of pile (sixteen year old municipal waste)Author :CA/KCDate :2013-12-16

Settings

Standard - safety factors **Stability analysis**

Verification methodology : Safety factors (ASD)

Safety factors				
Permanent design situation				
Safety factor :	SF _s =	1.50 [-]	

Interface

No.	Interface location		Coordi	nates of inte	rface point	ts [m]	
NO.		x	z	x	z	x	z
		0.00	15.00	2.35	14.97	15.00	17.50
		25.00	17.50	30.00	16.50	40.00	18.50
		45.00	18.50	50.00	17.50	60.00	19.87
1		130.00	36.50	280.00	44.50	430.00	36.50
	1	515.26	17.55	520.00	16.50	522.00	17.50
		524.00	17.50	540.00	12.50	542.39	11.74
		542.41	11.73	580.00	11.50		
		60.00	19.87	65.00	18.50	505.00	15.50
2		515.26	17.55				
		2.35	14.97	40.00	14.50	103.00	15.50
0		103.11	15.61	193.33	14.83	200.00	14.00
3		256.96	14.28	374.19	13.27	400.00	12.50
		500.00	12.00				
		0.00	13.32	60.00	13.32	280.00	7.95
4		500.00	12.00	542.41	11.73		
-		0.00	11.62	60.00	11.62	280.00	6.15
5		500.00	5.00	580.00	5.00		

Soil parameters - effective stress state

No.	Name	Pattern	Фef [°]	c _{ef} [kPa]	γ [kN/m ³]
1	Compact Silty Sand		38.00	0.00	22.00
2	Silty Sand Till		40.00	0.00	22.50

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com| www.gtscad.com]

No	Name	Pattern	Фef [°]	c _{ef} [kPa]	γ [kN/m ³]
3	Clay Liner		28.00	0.00	19.50
4	Waste		37.00	9.00	14.00

Soil parameters - uplift

No.	Name	Pattern	γ̃sat [kN/m ³]	γ _s [kN/m³]	n [-]
1	Compact Silty Sand		22.00		
2	Silty Sand Till		22.50		
3	Clay Liner		19.50		
4	Waste		14.00		

Soil parameters

Compact Silty Sand Unit weight : Stress-state : Angle of internal friction : Cohesion of soil : Saturated unit weight :	$effectiv \phi_{ef} = c_{ef} =$	22.00 kN/m ³ e 38.00 ° 0.00 kPa 22.00 kN/m ³
Silty Sand Till		
Unit weight :	γ =	22.50 kN/m ³
Stress-state :	effectiv	'e
Angle of internal friction :	$\varphi_{ef} =$	40.00 °
Cohesion of soil :	c _{ef} =	0.00 kPa
Saturated unit weight :	_{γsat} =	22.50 kN/m ³
Clay Liner		
Unit weight :	γ =	19.50 kN/m ³
Stress-state :	éffectiv	
Angle of internal friction :	φ_{ef} =	28.00 °
Cohesion of soil :	c _{ef} =	0.00 kPa
Saturated unit weight :		19.50 kN/m ³

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com] www.gtscad.com]

Waste		
Unit weight :	γ =	14.00 kN/m ³
Stress-state :	effectiv	/e
Angle of internal friction :	φ_{ef} =	37.00 °
Cohesion of soil :	c _{ef} =	9.00 kPa
Saturated unit weight :	γ _{sat} =	14.00 kN/m ³

Rigid bodies

No.	Name	Sample	γ [kN/m ³]
1	Bedrock		24.00

Assigning and surfaces

No.	Surface position	Coordin	nates of su	rface points	[m]	Assigned
NO.	Surface position	x	z	x	z	soil
		65.00	18.50	505.00	15.50	Waste
		515.26	17.55	430.00	36.50	Waste
1		280.00	44.50	130.00	36.50	$\times \times \times \times \times \times \times \times \times$
		60.00	19.87			
		542.41	11.73	542.39	11.74	Clay Liner
		540.00	12.50	524.00	17.50	
		522.00	17.50	520.00	16.50	
		515.26	17.55	505.00	15.50	
		65.00	18.50	60.00	19.87	
		50.00	17.50	45.00	18.50	
2		40.00	18.50	30.00	16.50	
		25.00	17.50	15.00	17.50	
		2.35	14.97	40.00	14.50	
		103.00	15.50	103.11	15.61	
		193.33	14.83	200.00	14.00	
		256.96	14.28	374.19	13.27	
		400.00	12.50	500.00	12.00	
		60.00	13.32	280.00	7.95	Compact Silty Sand
		500.00	12.00	400.00	12.50	Compact Sitty Sand
		374.19	13.27	256.96	14.28	
3		200.00	14.00	193.33	14.83	
		103.11	15.61	103.00	15.50	
		40.00	14.50	2.35	14.97	
		0.00	15.00	0.00	13.32	
		60.00	11.62	280.00	6.15	
		500.00	5.00	580.00	5.00	Silty Sand Till
,		580.00	11.50	542.41	11.73	
4		500.00	12.00	280.00	7.95	60000000
		60.00	13.32	0.00	13.32	
		0.00	11.62			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com] www.gtscad.com]

13-107 Carp Landfill Development

CA/KC

. Surface position		ates of su	Assigned		
Surface position	x	z	x	z	soil
5	500.00	5.00	280.00	6.15	Bedrock
	60.00	11.62	0.00	11.62	Bearock
	0.00	0.00	580.00	0.00	
	580.00	5.00			
	Surface position	Surrace position x 500.00 60.00 0.00 0.00	Surface position x z 500.00 5.00 60.00 11.62 0.00 0.00	Surface position x z x 500.00 5.00 280.00 60.00 11.62 0.00 0.00 0.00 580.00	x z x z 500.00 5.00 280.00 6.15 60.00 11.62 0.00 11.62 0.00 0.00 580.00 0.00

Water

Water type : GWT

No.	GWT location	Coordinates of GWT points [m]					
NO.	GWT location	x	z	x	z	x	z
		0.00	14.48	0.38	14.48	44.90	14.72
		50.10	17.29	60.15	19.75	65.91	20.01
1		504.45	16.99	516.79	16.99	519.80	16.26
		542.25	11.29	579.35	10.80	580.00	10.79

Tensile crack

Tensile crack not inputted.

Earthquake

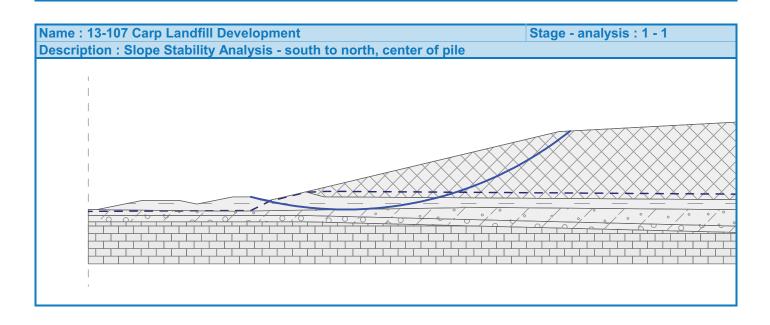
Earthquake not included.

Settings of the stage of construction

Design situation : permanent

Results (Stage of construction 1)

Analysis 1


Circular slip surface

Slip surface parameters								
Conton	x =	71.04	[m]		α ₁ =	-15.27 [°]		
Center :	z =	114.44	[m]	Angles :	α ₂ =	38.55 [°]		
Radius : R = 99.45 [m]								
The slip surface after optimization.								

Segments restricting slip surface

No.	First	point	Second	l point
NO.	x [m]	z [m]	x [m]	z [m]
1	133.31	36.84	132.71	36.53
2	132.80	36.54	130.07	36.41
3	132.53	36.90	50.65	17.45
4	51.04	17.46	49.94	17.54

Slope stability verification (Bishop)									
Sum of active forces :	F _a =	1759.03	kN/m						
Sum of passive forces :	F _p =	4817.30	kN/m						
Sliding moment :	M _a =	174935.66	kNm/m						
Resisting moment :	M _p =	479080.29	kNm/m						
Factor of safety = 2.74 > Slope stability ACCEP		E							

APPENDIX 'CC'

13-107 Carp Landfill Development

CA/KC

Slope stability analysis

Input data

Project

Task :13-107 Carp Landfill DevelopmentDescription :Slope Stability Analysis - south to north, center of pile (12 month old municipal waste)Author :CA/KCDate :2013-12-09

Settings

(input for current task) **Stability analysis**

Verification methodology : Safety factors (ASD)

Safety factors					
	Seismic design sit	uation			
Safety factor : SF _s = 1.10 [-]					

Interface

No.	Interface location		Coordi	nates of inte	rface point	ts [m]	
NO.	interface location		z	x	z	x	z
		0.00	15.00	2.35	14.97	15.00	17.50
		25.00	17.50	30.00	16.50	40.00	18.50
		45.00	18.50	50.00	17.50	60.00	19.87
1		130.00	36.50	280.00	44.50	430.00	36.50
	1	515.26	17.55	520.00	16.50	522.00	17.50
		524.00	17.50	540.00	12.50	542.39	11.74
		542.41	11.73	580.00	11.50		
		60.00	19.87	65.00	18.50	505.00	15.50
2		515.26	17.55				
		2.35	14.97	40.00	14.50	103.00	15.50
0		103.11	15.61	193.33	14.83	200.00	14.00
3		256.96	14.28	374.19	13.27	400.00	12.50
		500.00	12.00				
		0.00	13.32	60.00	13.32	280.00	7.95
4		500.00	12.00	542.41	11.73		
-		0.00	11.62	60.00	11.62	280.00	6.15
5		500.00	5.00	580.00	5.00		

Soil parameters - effective stress state

No.	Name	Pattern	Фef [°]	c _{ef} [kPa]	γ [kN/m ³]
1	Compact Silty Sand		38.00	0.00	22.00
2	Silty Sand Till		40.00	0.00	22.50

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com] www.gtscad.com]

No.	Name	Pattern	Фef [°]	c _{ef} [kPa]	γ [kN/m ³]
3	Clay Liner		0.00	120.00	19.50
4	Waste		28.00	30.00	14.00

Soil parameters - uplift

No.	Name	Pattern	^γ sat [kN/m ³]	γ̃s [kN/m³]	n [-]
1	Compact Silty Sand		22.00		
2	Silty Sand Till		22.50		
3	Clay Liner		19.50		
4	Waste		14.00		

Soil parameters

Compact Silty Sand Unit weight : Stress-state : Angle of internal friction : Cohesion of soil : Saturated unit weight :	$effectiv \phi_{ef} = c_{ef} =$	22.00 kN/m ³ e 38.00 ° 0.00 kPa 22.00 kN/m ³
Silty Sand Till Unit weight : Stress-state : Angle of internal friction : Cohesion of soil : Saturated unit weight :	$effectiv \phi_{ef} = c_{ef} =$	22.50 kN/m ³ e 40.00 ° 0.00 kPa 22.50 kN/m ³
Clay Liner Unit weight : Stress-state : Angle of internal friction : Cohesion of soil : Saturated unit weight :	$\begin{array}{l} \gamma & = \\ effectiv\\ \phi_{ef} & = \\ c_{ef} & = \\ \gamma_{sat} & = \end{array}$	19.50 kN/m ³ e 0.00 ° 120.00 kPa 19.50 kN/m ³

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com] www.gtscad.com]

Wasle		
Unit weight :	$\gamma = \gamma$	14.00 kN/m ³
Stress-state :	effective	
Angle of internal friction :	$\varphi_{ef} = 2$	28.00 °
Cohesion of soil :	01	30.00 kPa
Saturated unit weight :	_{γsat} = ΄	14.00 kN/m ³

Rigid bodies

No.	Name	Sample	γ [kN/m ³]
1	Bedrock		24.00

Assigning and surfaces

No.	Surface position	Coordir	nates of su	rface points	[m]	Assigned
NO.	Surface position	x	z	x	z	soil
		65.00	18.50	505.00	15.50	Waste
		515.26	17.55	430.00	36.50	Wasie
1		280.00	44.50	130.00	36.50	$\times \times \times \times \times \times \times \times \times$
		60.00	19.87			
		542.41	11.73	542.39	11.74	Clay Liner
		540.00	12.50	524.00	17.50	
		522.00	17.50	520.00	16.50	
		515.26	17.55	505.00	15.50	
		65.00	18.50	60.00	19.87	
		50.00	17.50	45.00	18.50	
2		40.00	18.50	30.00	16.50	
		25.00	17.50	15.00	17.50	
		2.35	14.97	40.00	14.50	
		103.00	15.50	103.11	15.61	
		193.33	14.83	200.00	14.00	
		256.96	14.28	374.19	13.27	
		400.00	12.50	500.00	12.00	
		60.00	13.32	280.00	7.95	Compact Silty Sand
		500.00	12.00	400.00	12.50	Compact Silty Sand
		374.19	13.27	256.96	14.28	
3		200.00	14.00	193.33	14.83	
	F	103.11	15.61	103.00	15.50	
		40.00	14.50	2.35	14.97	
		0.00	15.00	0.00	13.32	
		60.00	11.62	280.00	6.15	Cilty Cand Till
		500.00	5.00	580.00	5.00	Silty Sand Till
,		580.00	11.50	542.41	11.73	
4		500.00	12.00	280.00	7.95	6000000
		60.00	13.32	0.00	13.32	
		0.00	11.62			

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com] www.gtscad.com]

13-107 Carp Landfill Development

CA/KC

No.	Surface position	Coordir	ates of su	Assigned		
NO.	Surface position	x	z	x	z	soil
		500.00	5.00	280.00	6.15	Bedrock
		60.00	11.62	0.00	11.62	Bedrock
5	5	0.00	0.00	580.00	0.00	
		580.00	5.00			

Water

Water type : GWT

No. GWT location	Coordinates of GWT points [m]						
NO.	GWT location	x	z	x	z	x	z
		0.00	14.48	0.38	14.48	44.90	14.72
		50.10	17.29	60.15	19.75	65.91	20.01
1		504.45	16.99	516.79	16.99	519.80	16.26
		542.25	11.29	579.35	10.80	580.00	10.79

Tensile crack

Tensile crack not inputted.

Earthquake

Horizontal seismic coefficient : $K_h = 0.42$ Vertical seismic coefficient : $K_v = 0.00$

Settings of the stage of construction

Design situation : seismic

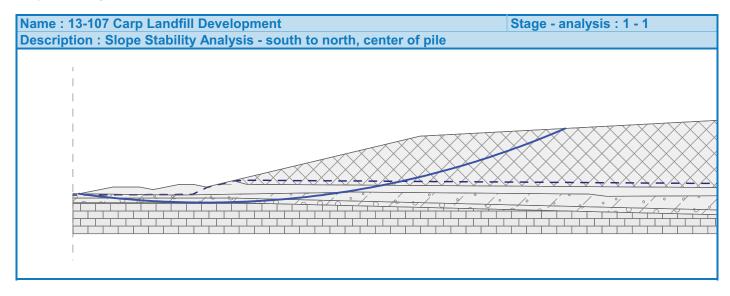
Results (Stage of construction 1)

Analysis 1

Circular slip surface

Slip surface parameters						
Center :	x =	49.63	[m]	Angles :	α ₁ =	-7.99 [°]
Center.	z =	352.95	[m]	Angles :	α ₂ =	23.26 [°]
Radius :	R =	341.29	[m]			
		The sli	p surface	after optimization.		

Segments restricting slip surface


No.	First point		Second point			
NO.	x [m]	z [m]	x [m]	z [m]		
1	133.31	36.84	132.71	36.53		
2	132.80	36.54	130.07	36.41		
3	132.53	36.90	50.65	17.45		
4	51.04	17.46	49.94	17.54		

Slope stability verification (Bishop)

	•	• /	
Sum of active forces :	F _a =	14306.23	kN/m
Sum of passive forces :	F _p =	15840.69	kN/m
Sliding moment :	M _a =	4882572.52	kNm/m
Resisting moment :	M _p =	5406270.52	kNm/m
Factor of safety = 1.11 >	1.10		

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com] www.gtscad.com]

Slope stability ACCEPTABLE

APPENDIX 'DD'

Slope stability analysis

Input data

Project

Task :13-107 Carp Landfill DevelopmentDescription :Slope Stability Analysis (seismic)- south to north, center of pile (sixteen year old municipal waste)Author :CA/KCDate :2013-12-16

Settings

(input for current task) **Stability analysis**

Verification methodology : Safety factors (ASD)

Safety factors				
Seismic design situation				
Safety factor :	SF _s =	1.10 [–]		

Interface

No.	Interface location		Coordi	nates of inte	rface point	ts [m]	
NO.		x	z	x	z	x	z
		0.00	15.00	2.35	14.97	15.00	17.50
		25.00	17.50	30.00	16.50	40.00	18.50
		45.00	18.50	50.00	17.50	60.00	19.87
1		130.00	36.50	280.00	44.50	430.00	36.50
	1	515.26	17.55	520.00	16.50	522.00	17.50
		524.00	17.50	540.00	12.50	542.39	11.74
		542.41	11.73	580.00	11.50		
		60.00	19.87	65.00	18.50	505.00	15.50
2		515.26	17.55				
		2.35	14.97	40.00	14.50	103.00	15.50
0		103.11	15.61	193.33	14.83	200.00	14.00
3		256.96	14.28	374.19	13.27	400.00	12.50
		500.00	12.00				
		0.00	13.32	60.00	13.32	280.00	7.95
4		500.00	12.00	542.41	11.73		
-		0.00	11.62	60.00	11.62	280.00	6.15
5		500.00	5.00	580.00	5.00		

Soil parameters - effective stress state

No.	Name	Pattern	Фef [°]	c _{ef} [kPa]	γ [kN/m ³]
1	Compact Silty Sand		38.00	0.00	22.00
2	Silty Sand Till		40.00	0.00	22.50

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com] www.gtscad.com]

No.	Name	Pattern	Фef [°]	c _{ef} [kPa]	γ [kN/m ³]
3	Clay Liner		0.00	120.00	19.50
4	Waste		37.00	9.00	14.00

Soil parameters - uplift

No.	Name	Pattern	γ̃sat [kN/m ³]	γ _s [kN/m³]	n [-]
1	Compact Silty Sand		22.00		
2	Silty Sand Till		22.50		
3	Clay Liner		19.50		
4	Waste		14.00		

Soil parameters

Compact Silty Sand Unit weight : Stress-state : Angle of internal friction : Cohesion of soil : Saturated unit weight :	$effectiv \phi_{ef} = c_{ef} =$	22.00 kN/m ³ e 38.00 ° 0.00 kPa 22.00 kN/m ³
Silty Sand Till Unit weight : Stress-state : Angle of internal friction : Cohesion of soil : Saturated unit weight :	$effectiv \phi_{ef} = c_{ef} =$	22.50 kN/m ³ e 40.00 ° 0.00 kPa 22.50 kN/m ³
Clay Liner Unit weight : Stress-state : Angle of internal friction : Cohesion of soil : Saturated unit weight :	$\begin{array}{l} \gamma & = \\ effectiv\\ \phi_{ef} & = \\ c_{ef} & = \\ \gamma_{sat} & = \end{array}$	19.50 kN/m ³ e 0.00 ° 120.00 kPa 19.50 kN/m ³

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com] www.gtscad.com]

Waste		
Unit weight :	γ =	14.00 kN/m ³
Stress-state :	effectiv	/e
Angle of internal friction :	φ_{ef} =	37.00 °
Cohesion of soil :	c _{ef} =	9.00 kPa
Saturated unit weight :	γ _{sat} =	14.00 kN/m ³

Rigid bodies

No.	Name	Sample	γ [kN/m ³]
1	Bedrock		24.00

Assigning and surfaces

No.	Surface position	Coordin	nates of su	rface points	[m]	Assigned
NO.	Surface position	x	z	x	z	soil
		65.00	18.50	505.00	15.50	Waste
		515.26	17.55	430.00	36.50	Waste
1		280.00	44.50	130.00	36.50	$\times \times \times \times \times \times \times \times \times$
		60.00	19.87			
		542.41	11.73	542.39	11.74	Clay Liner
		540.00	12.50	524.00	17.50	
		522.00	17.50	520.00	16.50	
		515.26	17.55	505.00	15.50	
		65.00	18.50	60.00	19.87	
		50.00	17.50	45.00	18.50	
2		40.00	18.50	30.00	16.50	
		25.00	17.50	15.00	17.50	
		2.35	14.97	40.00	14.50	
		103.00	15.50	103.11	15.61	
		193.33	14.83	200.00	14.00	
		256.96	14.28	374.19	13.27	
		400.00	12.50	500.00	12.00	
		60.00	13.32	280.00	7.95	Compact Silty Sand
		500.00	12.00	400.00	12.50	Compact Sitty Sand
		374.19	13.27	256.96	14.28	
3		200.00	14.00	193.33	14.83	
		103.11	15.61	103.00	15.50	
		40.00	14.50	2.35	14.97	
		0.00	15.00	0.00	13.32	
		60.00	11.62	280.00	6.15	
		500.00	5.00	580.00	5.00	Silty Sand Till
,		580.00	11.50	542.41	11.73	
4		500.00	12.00	280.00	7.95	60000000
		60.00	13.32	0.00	13.32	
		0.00	11.62			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com] www.gtscad.com]

13-107 Carp Landfill Development

CA/KC

No.	Surface position	Coordinates of surface points [m]				Assigned	
NO.	Surface position	x	z	x	z	soil	
		500.00	5.00	280.00	6.15	Bedrock	
		60.00	11.62	0.00	11.62	Bedrock	
5		0.00	0.00	580.00	0.00		
		580.00	5.00				

Water

Water type : GWT

No.	GWT location	Coordinates of GWT points [m]						
NO.	GWT location	x	z	x	z	x	z	
	0.00	14.48	0.38	14.48	44.90	14.72		
		50.10	17.29	60.15	19.75	65.91	20.01	
1		504.45	16.99	516.79	16.99	519.80	16.26	
		542.25	11.29	579.35	10.80	580.00	10.79	

Tensile crack

Tensile crack not inputted.

Earthquake

Horizontal seismic coefficient : $K_h = 0.42$ Vertical seismic coefficient : $K_v = 0.00$

Settings of the stage of construction

Design situation : seismic

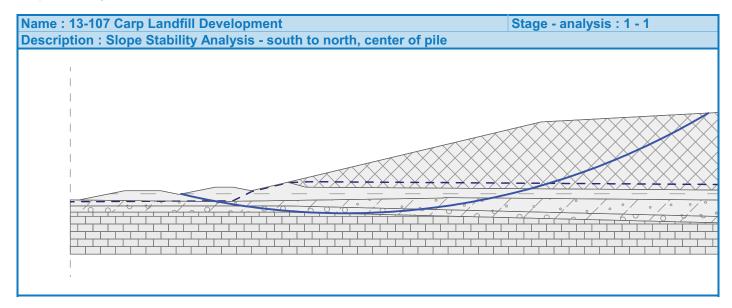
Results (Stage of construction 1)

Analysis 1

Circular slip surface

Slip surface parameters							
Center :	x =	75.91	[m]	Angles :	α ₁ =	-13.41 [°]	
Center.	z =	206.67	[m]		α ₂ =	30.86 [°]	
Radius :	R =	195.37	[m]				
The slip surface after optimization.							

Segments restricting slip surface


No.	First point		Second point		
	x [m]	z [m]	x [m]	z [m]	
1	133.31	36.84	132.71	36.53	
2	132.80	36.54	130.07	36.41	
3	132.53	36.90	50.65	17.45	
4	51.04	17.46	49.94	17.54	

Slope stability verification (Bishop)

Sum of active forces :	$F_{a} =$	14020.36	kN/m
Sum of passive forces :		15847.67	
Sliding moment :	M _a =	2739157.55	kNm/m
Resisting moment :	M _p =	3096159.81	kNm/m
Factor of safety = 1.13 >	1.10		

[GEO5 - Slope Stability | version 5.17.8.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com] www.gtscad.com]

Slope stability ACCEPTABLE

APPENDIX 'EE'

13-107 Carp Landfill Development

CA/KC

Settlement analysis

Input data

Project

Task :13-107 Carp Landfill DevelopmentDescription :Settlement Analysis - south to north, center of pileAuthor :CA/KCDate :2013-08-29

Settings

Standard - safety factors Settlement

Analysis method :Analysis using oedometric modulusRestriction of influence zone :by percentage of Sigma,OrCoeff. of restriction of influence zone :10.0 [%]

Interface

No	No. Interface location	Coordinates of interface points [m]							
NO.		x	z	x	z	x	z		
	1	0.00	125.50	40.00	125.00	103.00	126.00		
		104.00	127.00	180.00	127.00	200.00	124.50		
1		300.00	125.00	350.00	124.50	400.00	123.00		
		500.00	122.50	580.00	122.00				
0		0.00	123.82	60.00	123.82	280.00	118.45		
2		500.00	122.50						
0	3	0.00	122.12	60.00	122.12	280.00	116.65		
3 =		500.00	115.50	580.00	115.50				

Incompressible subsoil

No. I	Leastion of incompress subseil	Coordinates of points of incompress.subsoil [m]						
	Location of incompress.subsoil	x	z	x	z	x	z	
		0.00	119.12	60.00	119.12	280.00	113.65	
	500.00	112.50	580.00	112.50				

Soil parameters

Compact Silty Sand Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{oed} = γ _{sat} =	22.00 kN/m ³ 110.00 MPa 22.00 kN/m ³
Silty Sand Till Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{oed} = γ _{sat} =	22.50 kN/m ³ 350.00 MPa 22.50 kN/m ³
Bedrock Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{oed} = γ _{sat} =	24.00 kN/m ³ 500.00 MPa 24.00 kN/m ³

Clay Liner

[GEO5 - Settlement | version 5.17.7.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited || sales@gtscad.com| www.gtscad.com]

Unit weight :	γ =	19.50 kN/m ³
Oedometric modulus :	E _{oed} =	25.00 MPa
Saturated unit weight :	γ _{sat} =	19.50 kN/m ³
Waste Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{oed} = γ _{sat} =	14.00 kN/m ³ 5.00 MPa 14.00 kN/m ³

Assigning and surfaces

No.	Surface position	Coordi	าates of รเ	urface points	; [m]	Assigned
NO.	Surface position	x	z	x	z	soil
		60.00	123.82	280.00	118.45	Compact Silty Sand
		500.00	122.50	400.00	123.00	Compact Silty Sand
		350.00	124.50	300.00	125.00	
1		200.00	124.50	180.00	127.00	
		104.00	127.00	103.00	126.00	
		40.00	125.00	0.00	125.50	
		0.00	123.82			
		60.00	122.12	280.00	116.65	
		500.00	115.50	580.00	115.50	Silty Sand Till
2		580.00	122.00	500.00	122.50	0 0 0 7 0 0 0
		280.00	118.45	60.00	123.82	
		0.00	123.82	0.00	122.12	0/0 Ø 0 0 0 0
		500.00	115.50	280.00	116.65	
		60.00	122.12	0.00	122.12	Bedrock
3		0.00	110.50	580.00	110.50	
3	· · · · · · · · · · · · · · · · · · ·	580.00	115.50			

Water

Water type : No water

Holes layout

Layout and refinement of holes : standard

Horizontal layout

Layout pattern :	exact
Add holes :	by number of sections
Number of sections :	20

Vertical refinement

No.	From depth [m]	Refinement [m]
1	0.00	0.10
2	2.00	0.30
3	5.00	0.50
4	10.00	2.00
5	30.00	10.00

Results (Stage of construction 1)

Results

Analysis of geostatic stress was successfully completed

Input data (Stage of construction 2)

Earth cut

	No. Cut location	Coordinates of cut points [m]						
L		x	z	x	z	X	z	
	1		0.00	127.00	580.00	122.00		

Assigning and surfaces

No.	Surface position	Coordii	nates of su	urface points	; [m]	Assigned
NO.	Surface position	x	z	x	z	soil
		400.00	123.00	374.19	123.77	Compact Silty Sand
		256.96	124.78	200.00	124.50	Compact Silty Sand
		193.33	125.33	103.11	126.11	
1		103.00	126.00	40.00	125.00	• • • • • • • • • •
		0.00	125.50	0.00	123.82	
		60.00	123.82	280.00	118.45	
		500.00	122.50			
		60.00	122.12	280.00	116.65	
		500.00	115.50	580.00	115.50	Silty Sand Till
2		580.00	122.00	500.00	122.50	0 0 0 7 0 0 0
		280.00	118.45	60.00	123.82	
		0.00	123.82	0.00	122.12	0/0 Ø 0/0 /0
		500.00	115.50	280.00	116.65	
		60.00	122.12	0.00	122.12	Bedrock
3		0.00	110.50	580.00	110.50	
5		580.00	115.50			

Water

Water type : No water

Results (Stage of construction 2)

Results

Analysis performed, method Analysis using oedometric modulus Maximum settlement = 0.0 mm Maximum depth of influence zone = 0.00 m

Input data (Stage of construction 3)

Embankment interface

No.	Interface location	Coordinates of interface points [m]							
		x	z	x	z	x	z		
	1	2.35	125.47	15.00	128.00	25.00	128.00		
		30.00	127.00	40.00	129.00	45.00	129.00		
		50.00	128.00	60.00	130.37	130.00	147.00		
1		280.00	155.00	430.00	147.00	515.26	128.05		
		520.00	127.00	522.00	128.00	524.00	128.00		
		540.00	123.00	542.39	122.24	542.41	122.23		
	2	60.00	130.37	65.00	129.00	505.00	126.00		
2		515.26	128.05						

Assigning and surfaces

No.	Surface position	Coordi	nates of su	rface points	[m]	Assigned
NO.	Surface position	x	z	X	z	soil
		65.00	129.00	505.00	126.00	Waste
1		515.26	128.05	430.00	147.00	Waste
		280.00	155.00	130.00	147.00	$\times \times \times \times \times \times \times \times \times$
		60.00	130.37			
		400.00	123.00	500.00	122.50	Clay Liner
		542.41	122.23	542.39	122.24	
		540.00	123.00	524.00	128.00	
		522.00	128.00	520.00	127.00	
		515.26	128.05	505.00	126.00	
		65.00	129.00	60.00	130.37	
2		50.00	128.00	45.00	129.00	
	·	40.00	129.00	30.00	127.00	
		25.00	128.00	15.00	128.00	<u></u>
		2.35	125.47	40.00	125.00	
		103.00	126.00	103.11	126.11	
		193.33	125.33	200.00	124.50	
		256.96	124.78	374.19	123.77	
		400.00	123.00	374.19	123.77	Compact Silty Sand
		256.96	124.78	200.00	124.50	Compact Silly Sand
		193.33	125.33	103.11	126.11	
3		103.00	126.00	40.00	125.00	
		2.35	125.47	0.00	125.50	
		0.00	123.82	60.00	123.82	
		280.00	118.45	500.00	122.50	
		60.00	122.12	280.00	116.65	Silty Sand Till
		500.00	115.50	580.00	115.50	
4		580.00	122.00	542.41	122.23	
4		500.00	122.50	280.00	118.45	60000000
		60.00	123.82	0.00	123.82	
		0.00	122.12			
	· · · · · · · · · · · · · · · · · · ·					1

[GEO5 - Settlement | version 5.17.7.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2013 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited || sales@gtscad.com| www.gtscad.com]

CA/KC	
ORINO	

No.	Surface position	Coordii	nates of su	Assigned		
NO.	Surface position	x	z	x	z	soil
	-	500.00	115.50	280.00	116.65	Bedrock
		60.00	122.12	0.00	122.12	Bedrock
5		0.00	110.50	580.00	110.50	
-		580.00	115.50			

Water

Water type : No water

Results (Stage of construction 3)

Results

Analysis performed, method Analysis using oedometric modulus

Maximum settlement = 28.9 mm Maximum depth of influence zone = 10.00 m

me : 13-107 Carp Landfill Development	Stage : 3
scription : Settlement Analysis - south to north, center of pile	
sults : overall; variable : Settlement; range : <0.0; 28.9> mm	
	1
	1
	1
	1
	2
	2
	2
	2
	2

APPENDIX 'FF'

Settlement analysis

Input data

Project

Task :13-107 Carp Landfill DevelopmentDescription :Settlement Analysis - west to east, center of pileAuthor :CA/KCDate :2013-08-29

Settings

Standard - safety factors Settlement

Analysis method :Analysis using oedometric modulusRestriction of influence zone :by percentage of Sigma,OrCoeff. of restriction of influence zone :10.0 [%]

Interface

No.	Interface location		Coordinates of interface points [m]							
NO.		x	z	x	z	x	z			
	1	0.00	125.00	260.00	125.00	460.00	126.00			
		480.00	125.50	510.00	126.00	700.00	127.00			
1		750.00	128.00	820.00	128.00	840.00	130.00			
		900.00	130.00	960.00	130.00					
0	-	0.00	120.27	90.00	120.44	450.00	118.45			
2		900.80	121.93	960.00	121.93					
0		0.00	119.24	90.00	119.24	450.00	116.65			
3		900.00	117.42	960.00	117.42					

Incompressible subsoil

No	No. Location of incompress.subsoil	Coordinates of points of incompress.subsoil [m]						
NO.		x	z	x	z	x	z	
		0.00	116.24	90.00	116.24	450.00	113.65	
1		900.00	114.42	960.00	114.42			

Soil parameters

Compact Silty Sand Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{oed} = γ _{sat} =	22.00 kN/m ³ 110.00 MPa 22.00 kN/m ³
Silty Sand Till Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{oed} = γ _{sat} =	22.50 kN/m ³ 350.00 MPa 22.50 kN/m ³
Bedrock Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{oed} = γ _{sat} =	24.00 kN/m ³ 500.00 MPa 24.00 kN/m ³

Clay Liner

Unit weight :	γ =	19.50 kN/m ³
Oedometric modulus :	E _{oed} =	25.00 MPa
Saturated unit weight :	γ _{sat} =	19.50 kN/m ³
Waste Unit weight : Oedometric modulus : Saturated unit weight :	γ = E _{oed} = γ _{sat} =	14.00 kN/m ³ 5.00 MPa 14.00 kN/m ³

Assigning and surfaces

No.	Surface position	Coordi	nates of su	urface points	; [m]	Assigned
NO.	Surface position	x	z	x	z	soil
		90.00	120.44	450.00	118.45	Compact Silty Sand
		900.80	121.93	960.00	121.93	Compact Silty Sand
		960.00	130.00	900.00	130.00	
		840.00	130.00	820.00	128.00	/ 0/ / 0 0 / 0
1		750.00	128.00	700.00	127.00	
		510.00	126.00	480.00	125.50	
		460.00	126.00	260.00	125.00	
		0.00	125.00	0.00	120.27	
		90.00	119.24	450.00	116.65	Cilty Cand Till
		900.00	117.42	960.00	117.42	Silty Sand Till
2		960.00	121.93	900.80	121.93	0 0 0 0 0 0 0 0 0
		450.00	118.45	90.00	120.44	
		0.00	120.27	0.00	119.24	0/0 Ø 0/0 /0
		900.00	117.42	450.00	116.65	
		90.00	119.24	0.00	119.24	Bedrock
3		0.00	111.65	960.00	111.65	
		960.00	117.42			

Water

Water type : No water

Holes layout

Layout and refinement of holes : standard

Horizontal layout

Layout pattern :	exact
Add holes :	by number of sections
Number of sections :	20

Vertical refinement

No.	From depth [m]	Refinement [m]
1	0.00	0.10
2	2.00	0.30
3	5.00	0.50
4	10.00	2.00
5	30.00	10.00

Results (Stage of construction 1)

Results

Analysis of geostatic stress was successfully completed

Input data (Stage of construction 2)

Earth cut

No.	Cut location		Coo	ordinates of c	ut points	[m]	
	Cut location	x	z	x	z	X	z
1	·	0.00	126.00	960.00	122.00		

Assigning and surfaces

No.	Surface position	Coordii	nates of su	Irface points	[m]	Assigned
NO.		x	z	x	z	soil
		90.00	120.44	450.00	118.45	Compact Silty Sand
		900.80	121.93	960.00	121.93	Compact Sitty Sand
1		960.00	122.00	240.00	125.00	。
		0.00	125.00	0.00	120.27	
		90.00	119.24	450.00	116.65	
		900.00	117.42	960.00	117.42	Silty Sand Till
2		960.00	121.93	900.80	121.93	0 0 0 7 0 0 0 0
		450.00	118.45	90.00	120.44	
		0.00	120.27	0.00	119.24	0/0 Ø 0/0 /0
		900.00	117.42	450.00	116.65	Dadaaala
		90.00	119.24	0.00	119.24	Bedrock
3		0.00	111.65	960.00	111.65	
		960.00	117.42			

Water

Water type : No water

Results (Stage of construction 2)

Results

Analysis performed, method Analysis using oedometric modulus

Maximum settlement = 0.0 mm

Maximum depth of influence zone = 0.00 m

Input data (Stage of construction 3)

Embankment interface

No.	Interface location	Coordinates of interface points [m]					
NO.	Interface location	x	z	x	z	x	z
	1	25.00	125.00	60.00	132.00	120.00	147.00
1		270.00	155.00	700.00	155.00	820.00	147.00
		902.11	127.84	910.00	126.00	960.00	126.00

13-107 Carp Landfill Development

No.	Interface location	Coordinates of interface points [m]					
		x	z	x	z	x	z
2		60.00	132.00	65.04	129.03	895.00	125.00
		900.00	127.00	902.11	127.84		

Assigning and surfaces

No.	Surface position	Coordinates of surface points [m]			Assigned		
NO.	Surface position	x	z	x	z	soil	
1		65.04	129.03	895.00	125.00	Waste	
		900.00	127.00	902.11	127.84	Waste	
		820.00	147.00	700.00	155.00	$\times \times $	
		270.00	155.00	120.00	147.00		
		60.00	132.00				
	-	960.00	122.00	960.00	126.00	Clay Liner	
		910.00	126.00	902.11	127.84	Clay Liner	
2		900.00	127.00	895.00	125.00		
		65.04	129.03	60.00	132.00		
		25.00	125.00	240.00	125.00		
		90.00	120.44	450.00	118.45	Compact Silty Sand	
3		900.80	121.93	960.00	121.93	Compact Sitty Sand	
		960.00	122.00	240.00	125.00	· · · · / · · · · /	
		25.00	125.00	0.00	125.00		
		0.00	120.27				
	-	90.00	119.24	450.00	116.65	Silty Sand Till	
		900.00	117.42	960.00	117.42	Silly Sand Till	
4		960.00	121.93	900.80	121.93	0 0 0 / 0 0 0 0	
	ŕ	450.00	118.45	90.00	120.44		
		0.00	120.27	0.00	119.24	0/000000000	
	, <u> </u>	900.00	117.42	450.00	116.65	Bedrock	
5		90.00	119.24	0.00	119.24	Dediock	
		0.00	111.65	960.00	111.65		
		960.00	117.42				

Water

Water type : No water

Results (Stage of construction 3)

Results

Analysis performed, method Analysis using oedometric modulus

Maximum settlement = 26.2 mm

Maximum depth of influence zone = 10.00 m

APPENDIX 4 SUPPLEMENTAL GEOTECHNICAL INVESTIGATION, PROPOSED LANDFILL EXPANSION, WEST CARLETON ENVIRONMENTAL CENTRE, CARP, ONTARIO, REF. NO. 13-182, DATED MARCH 12, 2014

SUPPLEMENTAL GEOTECHNICAL INVESTIGATION PROPOSED LANDFILL EXPANSION WEST CARLETON ENVIRONMENTAL CENTRE CARP, ONTARIO

REPORT REF. NO. 13-182 12 March 2014

Prepared For:

WSP Canada Inc. 1450 1st Avenue, Suite 101 Owen Sound, Ontario N4K 6W2

Prepared By:

Alston Associates Inc. Toronto

Distribution:

Electronic - WSP Canada Inc. copy 1 copy - Alston Associates Inc.

90 Scarsdale road Toronto, Ontario M3B 2R7 telephone: (905) 474-5265 fax: (416) 444-3179 e-mail: alston.associates@alston.ca alston associates inc.

CONTENTS

1	INTR	ODUCTION	1
2	BAC	KGROUND	2
3	FEA	IURES FOR SUPPLEMENTAL GEOTECHNICAL INVESTIGATION	2
4	FIELI	DWORK AND LABORATORY TESTING	3
	4.1	Soil Sampling and Testing	4
	4.2	Laboratory Testing	5
5	SUB	SURFACE AND GROUNDWATER CONDITIONS	6
	5.1	Existing Gravel Road at the Southwest Corner of the Proposed Landfill Expansion Site	6
	5.2	Proposed Infiltration Basin No. 1	7
	5.3	Proposed Infiltration Basin No. 2	10
	5.4	Proposed Stormwater Management Pond No. 1	12
	5.5	Proposed Stormwater Management Pond No. 2	13
6	DISC		15
	6.1	Roadway Pavement	15
	6.2	Proposed Infiltration Basins	19
	6.3	Proposed Stormwater Management Ponds	20
	6.4	Slope Stability Analyses	22
	6.5	Excavation, Backfill and Dewatering	
	6.6	Bedding for Sewers and Water Mains	24
7	LIMI	TATIONS OF REPORT	26

APPENDICES

APPENDIX A	LIMITATIONS OF REPORT
APPENDIX B	DRAWING NO. 1: BOREHOLE LOCATION PLAN
APPENDIX C	AAI 2013 GEOTECHNICAL INVESTIGATION: LOGS OF BOREHOLES 3, 4, 5, 8 AND 12
APPENDIX D	BOREHOLE LOGS
APPENDIX E	LABORATORY TEST RESULTS
APPENDIX F	SLOPE STABILITY ANALYSES

1 INTRODUCTION

Alston Associates Inc. (AAI) has been retained by WSP Canada Inc. to carry out a supplemental geotechnical investigation for the proposed landfill expansion located at West Carleton Environmental Centre (WCEC) in Carp, Ontario. Authorization to proceed with this study was given by Peter Brodzikowski, P.Eng. of WSP Canada Inc.

We understand that two stormwater management (SWM) ponds and two infiltration basins are proposed for construction at the east end of the proposed landfill expansion site. We also understand that it is proposed to construct a paved access road extending from the southwest corner of the proposed landfill site to the proposed Carp Road widening, construct a granular-surfaced maintenance/service road surrounding the perimeter of the proposed landfill, and pave the existing gravel road at the southwest corner of the proposed landfill site. We also understand that several underground utilities will be installed within the proposed landfill expansion site.

The purpose of this investigation was to characterize the subsurface soil and groundwater conditions, to determine the relevant geotechnical properties of encountered soils, and to provide geotechnical recommendations for:

- Structural design of proposed paved and granular-surfaced roads, including recommendations for placement of subgrade and components of the various pavement structures;
- Geotechnical support and guidance in design of infiltration basins, including recommendations relating to percolation rate of the in-situ soils and design of above grade containment berms;
- Recommendations relating to the design and construction of two proposed lined SWM ponds;
- Design recommendations required for paving the existing gravel road to the transfer station at the southwest corner of the Waste Management (WM) property; and
- Recommendations regarding installation of various utilities, including suitability of native soils and requirements for imported soils as bedding and backfill material.

This report presents the results of the investigation performed in accordance with the general terms of reference outlined above and is intended for the guidance of the client and the design engineers only. It is

assumed that the design will be in accordance with the applicable codes and standards.

2 BACKGROUND

In August 2013, a geotechnical investigation study was undertaken by **AAI** to determine the subsurface conditions for the captioned landfill expansion. Fieldwork for the investigation included advancing twelve (12) boreholes at the site, amongst which, four Boreholes numbered 4, 5, 8 and 12 were located within the area of the proposed infiltration basins then proposed. The findings of that study were presented in **AAI** geotechnical report Ref. 13-107 dated 3 December, 2013. Copies of the logs for Boreholes 4, 5, 8 and 12 are attached in Appendix C of this report.

3 FEATURES FOR SUPPLEMENTAL GEOTECHNICAL INVESTIGATION

The proposed WCEC landfill expansion is located immediately north of the existing closed Carp landfill site.

The proposed infiltration basins and SWM ponds are to be located to the east side of the proposed landfill expansion site. According to Drawing No. 131-19416-00-4-7 prepared by Waste Management of Canada Corporation / WSP Canada Inc., Infiltration Basin No. 1 and SWM Pond No. 1 will be located at the existing rehabilitated pit / old borrow area, designated as "Depression #4". Infiltration Basin No. 2 and SWM Pond No. 2 are to be located at the existing "Depression #5". An existing maintenance building separates the proposed basins.

A gravel road is located along the west perimeter of the existing closed Carp landfill site. This access road which currently extends from the existing waste transfer building to approximately 400 m north, will be extended to the new access road at Carp Road. It is also proposed to pave this access way with asphaltic concrete. The access road extending between Carp Road and the east limit of the proposed landfill site

will also be paved with either asphaltic concrete and/or portland cement concrete pavement.

4 FIELDWORK AND LABORATORY TESTING

The fieldwork for this investigation was carried out during the period between December 16 and 20, 2013, and consisted of twenty (20) exploratory boreholes, numbered 201 to 220 inclusive.

Borehole 201 was positioned within the footprint of the proposed SWM Pond No. 2. This borehole was advanced to 2 m below grade.

Boreholes 202, 203, 204 and 205 were positioned within the footprint of the proposed Infiltration Basin No. 2, and extended to depths ranging from 1.6 m to 7.6 m below grade.

Boreholes 206, 207, 208 and 209 were positioned within the footprint of the proposed Infiltration Basin No. 1, and extended to depths ranging from 4 m to 8.2 m below grade.

Boreholes 210 and 211 were drilled within the footprint of the proposed SWM Pond No. 2, and extended to depths of 4.3 m and 7.6 m (respectively) below grade. These boreholes were advanced to the depth of refusal of further advancement.

Boreholes 201 through 211 were advanced to the depth of refusal to further advancement of the auger.

Boreholes 212 to 220 (inclusive) were positioned within the existing gravel access road located along the west frontage of the closed Carp landfill site. These boreholes were advanced to depths ranging from 1.65 m to 1.8 m below grade.

The locations of the boreholes are shown on the attached Borehole Location Plan as Drawing No. 1 in Appendix B. For ease of reference, Boreholes 4, 5, 8 and 12 that were put down by **AAI** in August 2013 are also shown on the Borehole Location Plan.

The ground surface elevations at the locations of Boreholes 201 to 205 (inclusive) were referenced to the existing ground surface at the monitoring well installed in Borehole 4, which has a geodetic elevation of 118.60 m. This borehole was advanced by **AAI** in August 2013.

The ground surface elevations of Boreholes 206 to 211 (inclusive) were referenced to the top of the monitoring well installed in Borehole BH12, which has a geodetic elevation of 122.85 m. This borehole was also advanced by **AAI** in August 2013.

The ground surface elevations at the locations of Boreholes 212 to 220 (inclusive) were referenced to the floor slab of the existing waste transfer building located on the southwest side of the existing Carp landfill site. The floor slab of the building was assigned an elevation of 100.00 m.

The fieldwork was supervised by an experienced representative from this office who directed the advancement of the drilling, sampling and in situ testing, observed groundwater conditions, and prepared field Borehole Log Sheets.

4.1 Soil Sampling and Testing

The boreholes were advanced to the sampling depths by means of continuous flight solid stem augers. Standard Penetration Tests (SPT) were carried out in accordance with ASTM Method D1586, at frequent intervals of depth and representative samples were recovered using split spoon samplers. The results of the Standard Penetration Tests in terms of 'N' values have been used to infer the consistency of cohesive soils or the compactness condition of non-cohesive soils encountered in the boreholes.

Field vane shear test was carried out at Borehole 205; in the clayey soil at the depth zone where the standard penetration resistance "N" value was 10. The test provides an in situ measurement of the undrained shear strength of the clay soil unit.

Dynamic Cone Penetration Test (DCPT) was carried out below the sampling depth at Borehole 207, from 6.6

m to 8.2 m depth. The DCPT involves driving a 50 mm outside diameter cone into the ground using standard penetration test (DPSH) energy. The number of blows of the striking hammer required to drive the cone through successive 300 mm depth increments was recorded and these are presented on the borehole log as penetration index results.

Groundwater level observations were made in all boreholes during and upon completion of drilling of each borehole.

Soil samples retained from the split spoon sampler were identified in the field and detailed examinations were made in the laboratory for final geotechnical classification of soil types.

4.2 Laboratory Testing

The soil samples recovered from the boreholes were transported to our laboratory for detailed examination, soil classification and laboratory testing. The laboratory tests included determination of natural water contents, Atterberg Limits tests and soil particle size including sieve and hydrometer analyses on selected soil samples.

Water content tests were carried out on selected soil samples retained from the boreholes. The water contents of the tested soil samples are shown on the borehole logs enclosed in Appendix D.

Seven (7) soil samples, obtained from Boreholes 203 (sample 1), 204 (sample 2), 205 (sample 3), 206 (sample 3), 207 (sample 5), 215 (sample 2) and 219 (sample 2) were subjected to sieve and hydrometer analysis.

Nine (9) soil samples obtained from Boreholes 201 (sample 2), 202 (sample 2) and 208 (sample 6), as well as sample 1 from Boreholes 212, 213, 215, 217 and 220 were subjected to sieve analyses.

Atterberg Limits tests were performed on two (2) soil samples obtained from sample 2 from Boreholes 215 and 219.

The laboratory test results are presented in Appendix E.

5 SUBSURFACE AND GROUNDWATER CONDITIONS

Details of the subsurface conditions encountered are given on the individual borehole logs in Appendix D. A brief description of the soil units and groundwater conditions at each proposed feature locations are given in the following subsections.

It should be noted that the boundaries of soil types indicated on the borehole logs are inferred from non-continuous soil sampling and observations made during drilling. These boundaries are intended to reflect transition zones for the purpose of geotechnical design, and therefore, should not be construed as exact planes of geological change.

5.1 Existing Gravel Road at the Southwest Corner of the Proposed Landfill Expansion Site

Nine (9) boreholes, numbered 212 to 220 inclusive, were advanced along the existing gravel road located at the southwest corner of the proposed landfill expansion site.

The boreholes revealed that the existing gravel road pavement consists of predominantly gravelly sand, with trace to some silt. At Boreholes 214, 215, 216, 217, 218, 219 and 220, the gravelly sand fill is underlain by variable fill materials including sand, sandy silt to silty sand, with trace to some gravel, and trace to some clay.

Standard penetration tests performed in the granular fill layer recorded N values ranging from 50/125 mm to 50/75 mm penetration, corresponding to a very dense compactness condition. The high measured N values may be affected by the sampling spoon striking large size gravel and/or rock fragments embedded in the granular fill.

The thickness of the granular fill ranges to a maximum of 1.2 m, but is generally 600 mm.

Sieve analyses were carried out on four (4) representative gravelly sand samples, and hydrometer analyses were on three (3) sandy fill samples. The grain size analysis results are enclosed in Appendix E as Figures E-1

to E-6, and summarized in Table No. 1 below. In addition, Atterberg Limits tests were performed on two (2) silty sand samples; the results are enclosed in Appendix E as Figure E-12.

Borehole No.	Ground elevation	Approximate Sample Depth & Sample No.	Sample Description	Gravel %	Sand %	Silt %	Clay %	Liquid Limit	Plastic Limit
212	98.33 m	Near Surface, sample 1	Sand and gravel, trace silt		51	ç		-	-
213	98.30 m	Near Surface, sample 1	Gravelly sand, trace silt	32	59	Ç)	-	-
215	98.29 m	Near Surface, sample 1	Gravelly sand, trace silt	32	58	1	0	-	-
215	98.29 m	0.5 m depth, sample 2	Silty sand, trace gravel, some clay	9	39	33	19	27.8	11.9
217	98.49 m	Near Surface, sample 1	Gravelly sand, trace silt	32	59	ç)	-	-
219	98.91 m	0.5 m depth, sample 2	Gravelly silty sand, trace clay	25	46	22	7	19.5	6.6
220	99.04 m	Near Surface, sample 1	Sand, some gravel, trace silt and clay	17	71	9	3	-	-

 Table No. 1.
 Summary of Grain size Analyses of Granular Fill Samples

With the exception of Boreholes 217 and 219, a layer of clayey silt fill with trace sand and gravel was contacted below the granular fill; extending to the explored depths of the boreholes. Standard penetration resistance in the clayey fill had N values ranging from 14 to 67, indicating a stiff to hard consistency.

At Borehole 217, the gravely sand fill is underlain by a layer of gravel and rock fragments, followed by loose sand fill with trace gravel. At Borehole 219, native silty clay was contacted below the granular fill. Standard penetration resistance in the clay unit recorded N value of 24, indicating a very stiff consistency.

Groundwater was not encountered in the boreholes upon completion of drilling.

5.2 Proposed Infiltration Basin No. 1

Four (4) boreholes, numbered 206, 207, 208 and 209 were advanced within the footprint of the proposed Infiltration Basin No. 1. One borehole, BH8, instrumented with a monitoring well was previously put down by AAI during the August 2013 geotechnical investigation. A layer of topsoil comprises the uppermost stratum of the soil profile at Boreholes 206 and 207. The thickness of the topsoil is 1.4 m and 0.6 m respectively.

At Boreholes 208 and 209, the topsoil is overlain by an approximately 700 mm thick layer of fill. The fill consists of mainly sand and gravel, with some silt. The thickness of the buried topsoil approximates 1.4 m in Borehole 208, and 700 mm in Borehole 209.

Fill layer is present at the surface at Borehole 8, below the topsoil in Borehole 207, and underneath the buried topsoil in Boreholes 208 and 209. The fill consists of sand with trace organics in BH8, silty sand with some gravel and inclusions of rock fragments in Borehole 207, a mixture of silt, sand and gravel in Borehole 208, and sand with trace gravel and some organics in Borehole 209. Standard penetration tests carried out in the fill layer recorded N-values ranging from 2 (at Borehole 8, from 0.8 m to 2. 1 m depth) to 57 blows per 275 mm penetration (at Borehole 207, 2.3 m depth), indicating a very loose to very dense compactness condition. It should however be noted that the high N-values are likely attributed to the sampling spoon striking large particle(s) embedded within the fill, and are not considered to be representative of the compactness condition of the fill soils.

Underlying the fill in Boreholes 8, 207, 208 and 209, and below the topsoil in Borehole 206 is the native soil, which consists of sand and gravel in Borehole 8, and silty to sandy soils in the remaining boreholes with the soil fractions present in varying portions ranging from silt, sandy silt, silty sand to sand. At Boreholes 206 and 209, the sand stratum has inclusions of rock fragments at lower horizons.

Standard penetration tests carried out in the native silt to sand deposits measured N-values ranging from 14 to 50 blows per 75 mm penetration, indicating a compact to very dense compactness condition. In general, the lower N-values were measured at shallow depths of the native soils. The sand and gravel soils that were encountered in Borehole 8 had N-values of 29 to 51, corresponding to a compact to very dense compactness condition.

Dynamic Cone Penetration Test (DCPT) was carried out below the sampling depth at Borehole 207. The DCPT was performed from 6.7 m down to 8.2 m depth. The penetration resistance values measured from the DCPT ranged from 11 to 28, followed by refusal of cone penetration below 8.2 m depth.

All the boreholes were advanced to the depth of refusal of further advancement of the boreholes, which is assumed to be an inferred bedrock surface.

Grain size distribution tests were carried out on three samples of the native soils from Boreholes 206, 207 and 208 and on two samples from Borehole 8 (previous investigation). The grain size analysis results are enclosed in Appendix E as Figure E-7, and summarized in Table No. 2 below. Permeability of the various soil samples which are estimated based on Hazen's formula are also included in Table 2.

Borehole No.	Ground elevation	Approximate Sample Depth & Sample No.	Sample Description	Gravel %	Sand %	Silt %	Clay %	Estimated Permeability cm/sec
206	121.96 m	1.5 m, sample 3	Silty fine sand, trace clay, trace gravel	2	61	32	5	2.3x10 ⁻⁴
207	121.96 m	3.1 m, sample 5	Sand, some silt, trace gravel, trace clay	1	79	16	4	9x10 ⁻⁴
208	121.95 m	3.8 m, sample 6	Sand, trace silt	0	96	2	4	5x10 ⁻²
8	121.84 m	2.5 m, sample 4B	Gravelly sand, some silt trace clay	24	59	14	3	1.4x10 ⁻³
8	121.84 m	3.8 m, sample 6	Gravelly sand, trace to some silt	23	67	1	0	6.4x10 ⁻³

 Table No. 2.
 Summary of Grain size Analyses of Native Soil Samples

Groundwater was not encountered in Boreholes 206 and 209 upon completion of drilling. Wet silty and sandy soils were encountered in Boreholes 207 and 208; groundwater observations were not made due to caving of the boreholes at approximate elevation 118.25 m.

The monitoring well installed in Borehole 8 (August 2013) measured groundwater level at a depth of 4.8 m below grade; Elevation 117.04 m.

5.3 Proposed Infiltration Basin No. 2

Four boreholes, numbered 202, 203, 204 and 205, were advanced within the footprint of the proposed Infiltration Basin No. 2. One borehole, BH4, was put down by **AAI** in the August 2013 geotechnical investigation.

A surficial layer of topsoil 200 mm thick is present in in Borehole 205.

Fill soil is present at the ground surface in Boreholes 4 and 202 and below the topsoil layer in Borehole 205. The fill consists of a mixture of sand and gravel, trace to some silt, with inclusions of rock fragments. Standard penetration tests carried out in the fill layer provided N-values of 12 in Borehole 4, and 54 in Borehole 205, indicating a compact to very dense compactness condition. The high N-value is believed to be attributed to the sampling spoon striking large gravel and/or rock fragments embedded within the fill, and are not considered to be representative of the compactness condition of the fill soils.

The surface soil stratum in Boreholes 203 and 204, and below the fill in Boreholes 4, 202 and 205 is native soil.

At Boreholes 202, 203 and 204, the native soil consists of predominantly sand, with trace to some gravel and trace silt, and inclusions of rock fragments. Standard penetration tests carried out in the sand-gravel soils provided N-values ranging from 23 to 50 blows per 125 mm penetration, corresponding to a compact to very dense compactness condition.

At Borehole 205, the native soil consists of silty clay, with trace to some sand and trace gravel. Below an approximate depth of 3 m, the silty clay is a glacial till deposit, with trace sand and embedded gravel. Standard penetration resistance in the clay soil unit provided N-values ranging from 10 to 35 blows, indicating a stiff to hard consistency. A sandy silt (till) stratum was positioned within the clay soils; from approximately 3.7 m to 4.5 m depth. The sandy silt till has N-value of 16, corresponding to a compact condition.

At Borehole 4, the native soil is a glacial deposit (till) consisting of silty sand with trace gravel and clay, followed by cobbles and boulders extending to the explored depth of the borehole. Both the till soil and

the cobbles/boulders have a very dense compactness condition, as indicated by very high N-values of 73/225 mm to 50/75 mm penetration.

A field vane shear test was carried out in the lower silty clay in Borehole 205, at the depth zone where the measured penetration resistance "N" values was 10. The undrained shear strength of the tested soil was in excess of 222 kPa, corresponding to very stiff consistency.

All the boreholes were advanced to refusal of further advancement of the boreholes, which is assumed to be an inferred bedrock surface.

Grain size distribution tests were carried out on four (4) native soil samples from Boreholes 202, 203, 204 and 205, and one sample from Borehole 4. The grain size analysis results are enclosed in Appendix E as Figures E-8 and E-9, and summarized in Table No. 3 below. Permeability of the various sandy soil samples which are estimated based on Hazen's formula are also included in Table 3.

Borehole No.	Ground elevation	Approximate Sample Depth & Sample No.	Sample Description	Gravel %	Sand %	Silt %	Clay %	Estimated Permeability cm/sec
202	117.68 m	0.8 m, sample 2	Sand, trace silt, trace gravel	5	89	Û	6	4x10 ⁻²
203	117.35 m	Near surface, sample 1	Sand and gravel, trace silt, trace to some clay	43	41	6	10	1.6x10 ⁻⁵
204	117.79 m	0.8 m, sample 2	Sand and gravel, some silt, trace clay	45	39	11	5	8.1x10 ⁻⁵
205	122.59 m	1.5 m, sample 3	Silty clay, some sand, trace gravel	5	19	54	22	< 1x10 ⁻⁷
4	118.60 m	0.8 m, sample 2	Silty fine sand, some gravel, trace clay	11	60	24	5	8.1x10 ⁻⁵

 Table No. 3.
 Summary of Grain size Analyses of Native Soil Samples

Groundwater was encountered in Borehole 203 upon completion of drilling at 1.8 m depth below grade; Elevation 115.55 m. The remaining boreholes were dry upon completion of drilling.

5.4 Proposed Stormwater Management Pond No. 1

Two boreholes, numbered 210 and 211, were advanced within the footprint of the proposed Stormwater Management (SWM) Pond No. 1. One borehole, BH12, instrumented with a monitoring well was previously put down by **AAI** in the August 2013 geotechnical investigation.

Fill is present at all three boreholes. The fill consists of sandy silt at Borehole 210, silty sand with some gravel at Borehole 211, and sand with trace organics at Borehole 12. The fill extends to an approximate depth of 3 m at Boreholes 210 and 12, and 0.7 m at Borehole 211. Standard penetration tests carried out in the fill layer recorded N-values ranging from 3 to 28. The in situ test results indicate that the compactness condition of the fill is very loose to compact.

Underlying the fill, a sand and gravel unit with inclusions of rock fragments was contacted in Borehole 210 extending to the explored depth of the borehole. Sand to silty sand soils are present below the fill in Boreholes 211 and 12.

At Borehole 211, the upper section of the silty sand deposit is brown, changing to grey below an approximate depth of 5.6 m. The grey sand unit is a glacial deposit; with inclusions of trace gravel and rock fragments.

Standard penetration tests carried out in the sand-gravel soils provided N-values ranging from 23 blows per 300 mm penetration to 50 blows per 25 mm penetration, corresponding to a compact to very dense compactness condition.

At Borehole 12, low penetration resistance N-values of 2 to 7 were recorded in the sand soil unit, between approximately 4.5 m to 7 m depth. The Dynamic Cone Penetration Test that was performed adjacent to this borehole revealed that the penetration index values for the sand soils between 6 m to 7 m depths were higher than those obtained using the Standard Penetration Test method. In this regard, we are of the opinion that the lower penetration resistance values was attributed to the hydrostatic uplift pressure during

the Standard Penetration Test, causing loosening of the sand soils close to the base of the open borehole during the test.

All the boreholes were advanced to the depth of refusal of further advancement of the boreholes, which is assumed to be an inferred bedrock surface.

The monitoring well installed in Borehole 12 (August 2013) measured groundwater level at a depth of 2.8 m below grade; Elevation 119.16 m. Groundwater observations were not made in Boreholes 210 and 211 due to caving of the sandy soils at elevations 119.7 m and 118.8 m respectively.

Grain size distribution tests were carried out on two (2) native soil samples from Borehole 12. The grain size analysis results are enclosed in Appendix E as Figure E-10, and summarized in Table No. 4 below. Permeability of the sand soil samples which are estimated based on Hazen's formula are also included in Table 4.

 Table No. 4.
 Summary of Grain size Analysis of Native Soil Samples

Borehole No.	Ground elevation	Approximate Sample Depth & Sample No.	Sample Description	Gravel %	Sand %	Silt %	Clay %	Estimated Permeability cm/sec
12	121.96 m	3.1 m, sample 5	Fine sand, trace silt, trace clay	0	89	7	4	3x10 ⁻³
12	121.96 m	6.1 m, sample 8	Silty fine sand, trace clay	0	75	21	4	1.2x10 ⁻³

5.5 Proposed Stormwater Management Pond No. 2

One borehole, numbered 201 was advanced at the location of the proposed SWM Pond No. 2. One boreholes, BH5, was previously put down by **AAI** in the August 2013 geotechnical investigation.

The boreholes revealed that 100 and 200 mm thick layer of topsoil is present at Boreholes 5 and 201 respectively. At Borehole 201, the topsoil is underlain by an approximately 400 mm thick layer of fill

consisting of gravelly sand, with some organics and traces of silt and clay.

The fill at Borehole 201, and the topsoil at Borehole 5 are underlain by native soil. The native soil present at Borehole 201 consists of sand with inclusions of rock fragments. In Borehole 5 the native soil consists of medium to coarse sand and gravel. Standard penetration tests carried out in the native sand-gravel soils provided N-values ranging from 12 to 50/125 mm penetration, indicating a compact to very dense compactness condition.

Both boreholes were advanced to the depth of refusal of further advancement of the boreholes, which is assumed to be an inferred bedrock surface.

Grain size distribution test was carried out on one native sand sample obtained from Borehole 201 at 0.8 m depth, and one soil sample retained from Borehole 5 at 1 m depth. Results of the grain size analyses are enclosed in Appendix E as Figure E-11, and summarized in Table No. 5 below. Permeability of the soil samples which are estimated based on Hazen's formula are also included in Table 5.

Borehole No.	Ground elevation	Approximate Sample Depth & Sample No.	Sample Description	Gravel %	Sand %	Silt %	Clay %	Estimated Permeability cm/sec
5	117.58 m	1.0 m, sample 2	Medium to fine sand, some silt, some gravel, trace clay	12	72	13	3	1.4x10 ^{.3}
201	117.30 m	0.8 m, sample 2	Sand and gravel, trace silt	54	41		5	2.3x10 ⁻²

Groundwater was encountered in the open Borehole 201 upon completion of drilling, at a depth of 1.8 m below grade; elevation 115.50 m, and in the open Borehole 5 at a depth of 1.5 m below grade; at elevation 116.08 m.

6 DISCUSSION AND RECOMMENDATIONS

The following discussions and recommendations are based on the factual data obtained from this investigation and are intended for use by this project's design engineers.

6.1 Roadway Pavement

It is understood that new roads are proposed for construction to provide access for the new landfill expansion. The proposed roads will include:

- a new paved access road extending from the southwest corner of the proposed landfill site to the proposed Carp Road widening
- new granular-surfaced maintenance/service road (ring road) surrounding the perimeter of the proposed landfill
- pave the existing gravel road at the southwest corner of the proposed landfill site

According to Section 7.3 of Supporting Document 4, Facility Characteristics Report prepared by AECOM, truck traffic associated with the landfill operation will include hauling waste to the site as well as haulage of construction materials.

Based on Drawing No. 131-19416-00 – SK10 prepared by WM / WSP Canada Inc., the indications are that with the exception of the existing gravel road extending north from the existing waste transfer building, the grades along all remaining proposed roads will be raised by as much as 8 m.

The following recommendations regarding placement of fill under proposed roads should be adhered to during the construction stage:

• All exposed topsoil and organic soils must be removed, and the underlying subgrade soils compacted prior to any new fill placement.

- Fill operations should be monitored and compaction tests should be performed to ensure that the materials are being adequately compacted.
- Material used as fill should be free of organics and/or other unsuitable material, and must be placed in lifts suitable for the material and size of compactor being used, and compacted to at least 96% Standard Proctor Maximum Dry Density (SPMDD).
- If fill is required adjacent to sloped banks (> 3:1, horizontal to vertical), it is imperative that the fill is placed in stepped planes in order to avoid a plane weakness.
- The fill operation should take place in favorable climatic conditions. If the work is carried out in months where freezing temperatures may occur, all frost affected material must be removed prior to the placement of frost-free fill.

Based on information provided by WSP Canadawe understand that the roadways throughout the site should be designed for a service life of 25 years and the following anticipated traffic:

Section of the main road from the landfill entrance to the turnaround near SW corner of the expansion area:

- Average annual daily traffic (AADT) 700
- 55% packer and roll-off trucks (3-4 axles)
- 26% tractor trailers (7-9 axles)
- 19% small passenger cars and pickups

Section of road from the turnaround to Waste Transfer Processing Facility

- AADT 138
- 80% roll off trucks (3-4 axles)
- 20% tractor trailers (7-9 axles)

Ring road surrounding waste disposal area

The ring road surrounding the proposed waste disposal area will be used by internal site traffic which may include rock trucks.

We also understand that as loaded tractor trailers may keep down liftable axles and apply additional stress

on pavement on all 90 degree turns.

Based on a design life of 25 years, the anticipated usage provided above, and a CBR of 4 for the compacted fill subgrade, the following pavement designs are recommended for the gravel and paved roads.

Section of the main road from the landfill entrance to the turnaround near SW corner of the expansion area:

- Asphaltic concrete surface course 50 mm HL3 High Stability or Superpave 12.5 Level D with PG 64-28 asphalt cement
- Asphaltic concrete base course 100mm (2 layers) HL8 Heavy Duty Binder Course or Superpave 19 Level D with PG 64-28 asphalt cement
- Granular base course 150 mm of Granular 'A'
- Granular sub-base course 550 mm of Granular 'B' Type II

As an alternate to the asphaltic concrete pavement recommended above, in areas where trucks are to repeatedly stop and go, such as at gates, as well as make sharp turns, a Portland cement concrete pavement may be considered. The concrete pavement should consist of:

- Concrete 250 mm
- Granular base course 150 mm of Granular 'A'
- Granular sub-base course 300 mm of Granular 'B' Type II

The concrete must be air entrained, and possess minimum compressive and flexural strengths of 35 MPa and 4.8 MPa respectively.

Section of road from the turnaround to Waste Transfer Processing Facility

- Asphaltic concrete surface course 40 mm HL3 High Stability or Superpave 12.5 Level D with PG 64-28 asphalt cement
- Asphaltic concrete base course 80mm (2 layers) HL8 Heavy Duty Binder Course or Superpave 19 Level D with PG 64-28 asphalt cement
- Granular base course 150 mm of Granular 'A'
- Granular sub-base course 400 mm of Granular 'B' Type II

The in situ granular soil along the existing gravel road north of the transfer station may be left in place, and overlain with a minimum of 150 mm thick Granular 'A' base prior to placement of the asphaltic concrete layers recommended above.

Ring road surrounding waste disposal area

• Granular surface course – 300 mm of Granular 'A'

• Granular base course – 450 mm of Granular 'B' Type II

It should be noted that all proposed roadways will be suitable for use by fire trucks.

The subgrade must be compacted to at least 98% SPMDD for at least the upper 600 mm and 96% below this level. Where fine-grained clay soils are used for subgrade upfill, the degree of compaction specification alone cannot ensure distress free subgrade. Proof-rolling of the roadway subgrade must be carried out and witnessed by AAI personnel for final recommendations of sub-base.

The granular pavement structure materials should be placed in lifts not exceeding 150 mm thick and be compacted to a minimum of 100% SPMDD. Asphaltic concrete materials should be rolled and compacted as per OPSS 310. The granular and asphaltic concrete pavement materials and their placement should conform to OPSS 310, 501, 1010 and 1150.

The long-term performance of the proposed pavement structure is highly dependent upon the subgrade support conditions. Stringent construction control procedures should be maintained to ensure that uniform subgrade moisture and density conditions are achieved. In addition, the need for adequate drainage cannot be over-emphasized. The finished pavement surface and underlying subgrade should be free of depressions and should be crowned and sloped (at a minimum crossfall of 2% for both the pavement surface and the subgrade) to provide effective drainage. Surface water should not be allowed to pond adjacent to the outside edges of pavement areas. Sub-drains or roadside drainage ditches must be provided to facilitate effective and assured drainage of the pavement structures as required to intercept excess subsurface moisture and minimize subgrade softening. The invert of sub-drains and drainage ditches should be maintained at least 0.3 m below subgrade level.

In the event that the near surface subgrade soil cannot be maintained dry by providing good ditches and sub drains, than the fill within the uppermost 900 mm should consist of Select Subgrade Material (sandy soil).

6.2 Proposed Infiltration Basins

Details of the proposed Infiltration Basins No. 1 and No. 2 are provided in Drawing No. 131-19416-00 – SK10 prepared by WM / WSP Canada Inc. dated November 21, 2013.

According to this drawing, the proposed base elevation of Infiltration Basin No. 1 is 123.00 m, and of Infiltration Basin No. 2 is 122.00 m. The proposed grades at the top of the basins (containment berms) would range between 126.7 and 128 m at Infiltration Basin 1 and between 124.5 and 126.3 m at Infiltration Basin No. 2. The side slopes of both infiltration basin embankments would be 3H to 1V.

The existing site grades within the bases of the proposed infiltration basins range between 122 and 122.5 m, and between 117.5 to 124.5 m, at Basins 1 and 2 respectively. On this basis, the existing site grades will be raised to achieve the design base elevations of both infiltration basins.

Our recommendations regarding the construction of the proposed infiltration basins are:

- The existing topsoil, organic soil and any fill materials present within the footprints of the infiltration basins must be removed down to the native soil stratum.
- Soil possessing the design infiltration rate should be placed loosely within the base of both basins to the proposed grades of 122 m and 123 m.
- Fill placed within the containment berms of the basins should consist of clayey soils and compacted to a minimum 98% SPMDD. The uppermost at least 600 mm depth of the clayey soil placed within the berms should have the following properties:
 - o Plasticity Index greater than 7 percent.
 - o 100 percent of the particles passing 75 mm sieve.
 - o Not less than 70 percent of the particles, by weight, passing the 0.075 mm sieve.
 - o Not less than 20 percent of the particles, by weight, passing the 0.002 mm sieve.
 - o Placed in maximum 300 mm lifts and compacted to a minimum of 98% SPMDD.
 - o Placed at or slightly above optimum moisture content.

The permeability of the 5 soil samples retained from the footprint of Infiltration Basin 1 are estimated to be in

the range of 5x10⁻² to 2.3x10⁻⁴ cm/sec, corresponding to approximate percolation times of 3 to 10 min/cm respectively.

The permeability of the 4 soil samples retained from the footprint of Infiltration Basin 2 (Boreholes 202, 203, 204 and 4) are estimated to be in the range of $4x10^{-2}$ to $1.6x10^{-5}$ cm/sec, corresponding to approximate percolation times of 3 to 20 min/cm respectively. The silty clay present in Borehole 205, situated in the southeast quadrant of the footprint of Infiltration Basin 2 is considered to be impervious, with an estimated permeability of less than 10^{-7} cm/sec and corresponding percolation time in excess of 50 min/cm.

6.3 Proposed Stormwater Management Ponds

Details of the proposed SWM ponds which are provided in Drawing No. 131-19416-00 – SK10 prepared by WM / WSP Canada Inc. dated November 21, 2013 are summarized as follows:

	Proposed Base	Existing Base Elevation	Proposed top of Berm	Existing top of Berm
	Elevation (m)	(m)	Elevation (m)	Elevation (m)
SWM Pond 1	124.0	122.5 to 124.0	126.75 to 129.0	122.0 to 125.0
SWM Pond 2	122.8	117.5 to 122.5	126.3 to 126.8	117.5 to 125.0

The waterside slopes of the containment berms of the ponds would be 4H:1V and the landside or downstream slopes of the embankments would be 3H:1V. The top width of the berms will be approximately 3 m.

Three boreholes, numbered 12, 210 and 211, were advanced within the footprint of the proposed SWM Pond No. 1. Fill is present at all three boreholes. The fill consists of sandy silt at Borehole 210, silty sand with some gravel at Borehole 211, and sand with trace organics at Borehole 12. The fill extends to an approximate depth of 3 m at Borehole 210 and 12, and 0.7 m at Borehole 211. The in situ test results indicate that the compactness condition of the fill is very loose to compact. Underlying the fill, a sand and gravel unit with

inclusions of rock fragments was contacted in Borehole 210 extending to the explored depth of the borehole. Sand to silty sand soils are present below the fill in Boreholes 211 and BH12. At Borehole 211, the upper section of the silty sand deposit is brown, changing to grey below an approximate depth of 5.6 m. The grey sand unit is a glacial deposit; with inclusions of trace gravel and rock fragments.

Two boreholes, numbered 5 and 201 were advanced at the location of the proposed SWM Pond No. 2. The boreholes revealed that 100 to 200 mm thick layer of topsoil is present at all three boreholes. At Borehole 201, the topsoil is underlain by an approximately 400 mm thick layer of fill consisting of gravelly sand, with some organics and traces of silt and clay. The fill at Borehole 201, and the topsoil at Boreholes 5 are underlain by native soil. The native soil present at Borehole 201 consists of sand with inclusions of rock fragments. In Borehole 5 the native soil consists of medium to coarse sand and gravel.

The groundwater table across the area of the ponds is situated below elevation 120 m and is not anticipated to impact construction and continued performance of the ponds, as the bases of the ponds would be set above elevation 122.8 m.

Based on the available information, the bases of the ponds would be raised by as much as 5 m, and the containment berms would be raised by as much as 7 m. The soil present within the bases and side slopes of SWM Pond 1 consist of up to 3 m of loose fill underlain by sandy and gravelly soils. The soil that is present within the bases and side slopes of SWM Pond 2 consist of a thin (less than 400 mm thick) layer of topsoil or fill underlain by sand and gravelly sand soil.

Based on the above considerations the following recommendations are provided for construction of the proposed ponds:

- The existing topsoil, organic soil and any fill materials present within the footprints of the stormwater ponds must be removed down to the native soil stratum.
- Fill placed within the bases and containment berms of the pond should consist of clayey soils and

compacted to a minimum 98% SPMDD. The uppermost at least 600 mm depth of the clayey soil placed within the pond base and sidewalls should have the following properties:

- o Plasticity Index greater than 7 percent.
- o 100 percent of the particles passing 75 mm sieve.
- o Not less than 70 percent of the particles, by weight, passing the 0.075 mm sieve.
- o Not less than 20 percent of the particles, by weight, passing the 0.002 mm sieve.
- o Placed in maximum 300 mm lifts and compacted to a minimum of 98% SPMDD.
- o Placed at or slightly above optimum moisture content.

Alternatively a geosynthetic liner may be used. However since the bases and containment berms are to be raised using earth fill, installation of a compacted clay liner is considered to be more economical. Installation of a compacted clay liner is also more standard construction practice as compared to the more specialized procedures/specifications for geosynthetic liners. From a geotechnical perspective, a compacted clay liner is considered to be the preferred option.

6.4 Slope Stability Analyses

Analyses have been carried out to assess the stability of the side slopes of the completed infiltration basins and stormwater management ponds. Those analyses show a minimum factor of safety under a static loading condition with respect to global stability of 1.90; more than the required value of 1.5, which is satisfactory. Copies of the stability analyses for various sections and loading conditions are attached in Appendix 'F'. The soil parameters adopted for design evaluations are based on interpreted in situ and laboratory test data, as well as conservative values for the proposed fills, and are given in the analysis sheets.

The proposed containment berm gradients within the ponds and basins will remain stable against any sliding failure. The minimum Safety Factor of the global stability of the embankments; 1.90, is well over the minimum specified factor of 1.5, for any of the loading conditions.

6.5 Excavation, Backfill and Dewatering

Based on the field results, excavation of the soils at this site above the bedrock can be carried out with heavy hydraulic excavators.

All excavations must be carried out in accordance with Occupational Health and Safety Act (OHSA). The soil profile at the site generally consists of an upper layer of fill which is of variable quality and variable condition. On the basis of our inspection of the soil samples, it should be assumed that the fill materials will conform to Type 3 or Type 4 classification, as given in the Occupational Health and Safety Regulations. The compact to dense sand soils stiff silty clay which lie above the water table are expected to conform to Type 2 or Type 3 classification; below the water table the sand can be expected to behave as a flowing soil unless the soil is dewatered. Temporary excavation side-slopes should not exceed 1.0 horizontal to 1.0 vertical. For excavations through multiple soil types, the side slope geometry is governed by the soil with the highest number designation. Locally, where very loose or soft soil is encountered at shallow depths or within zones of persistent seepage, it will be necessary to flatten the side slopes as necessary to achieve stable conditions. Excavation side-slopes should not be left exposed to inclement weather. Excavation slopes consisting of sandy soils will be prone to gullying in periods of wet weather, unless the slopes are properly sheeted with tarpaulins.

Where workers must enter excavations extending deeper than 1.2 m below grade, the excavation side-walls must be suitably sloped and/or braced in accordance with the Occupational Health and Safety Act and Regulation for Construction Projects. The design of temporary shoring should be in accordance with the earth pressure diagram (Figure 26.8) from the Canadian Foundation Engineering Manual.

It is anticipated that proposed sewer pipe inverts and proposed manhole chambers will be situated above the groundwater level and as such dewatering should not be necessary. Surface water should be directed away from open excavations.

Based on the existing topography at the subject site and proposed grades, it is anticipated that significant

cut and fill operations will be required for development of the property.

On-site excavated inorganic native soils are considered suitable for reuse as backfill material or engineered fill, provided their water content is within 2% of their optimum moisture content (OMC) as determined by Standard Proctor test, and the materials are effectively compacted with heavy vibratory pad-type rollers (cohesive soils) and smooth drum rollers (cohesionless soils). The compactors must be of sufficient size and energy to break down the lumps and to knead the soil into a homogeneous mass as water and compaction effort is applied. If the equipment does not have sufficient energy to break down the lumps, there is a tendency to bridging and post construction settlements. In areas of narrow trenches or confined spaces such as around foundations, foundation walls, etc., the use of aggregate fill such as Granular 'B' (OPSS 1010) is required if there is to be post-construction grade integrity.

New fill placed to raise the existing grade must be compacted to the specified compaction requirements recommended in the preceding paragraphs. It is best to schedule deep fill placement as far in advance of finish surfacing as possible for best grade integrity.

If construction is carried out in inclement weather, there is a likelihood that some amount of road sub-base supplement may be required (i.e. some sub-excavation followed by granular replacement).

Should construction proceed during the winter season, it is imperative to ensure that frozen material is not utilized as trench backfill, beneath pavements or ponds.

6.6 Bedding for Sewers and Water Mains

The undisturbed natural soils at the site are suitable for supporting water mains, sewer pipes, manholes, catch basins and other related structures. Based on the present site grades, sewer pipes and water mains will probably be supported on the engineered fill, or undisturbed native soil deposits.

The type of bedding depends mainly on the strength of the subgrade immediately below the invert levels.

Normal Class 'B' bedding is recommended for underground utilities. Granular 'A' or 19 mm crusher-run limestone can be used as bedding material. The bedding material should be compacted to a minimum of 96% SPMDD.

Pipe bedding and backfill for flexible pipes should be undertaken in accordance with OPSD 802.010, 802.013, and 802.014. Pipe embedment and cover for rigid pipes should be undertaken in accordance with OPSD 802.030, 802.031, 802.032, 802.033 and 802.034.

Fine sand may be used as bedding material for HDPE pipes.

If unsuitable bedding conditions occur, careful preparation and strengthening of the trench bases prior to sewer installation will be required. The subgrade may be strengthened by placing a thick mat consisting of 50 mm crusher-run limestone. Field conditions will determine the depth of stone required. Geotextiles and/or geogrids may be helpful and these options should be reviewed by **AAI** on a case by case basis.

Sand cover material should be placed as backfill to at least 300 mm above the top of pipes. Placement of additional granular material (thickness dictated by the type of compaction equipment) as required or use of smaller compaction equipment for the first few lifts of native material above the pipe will probably be necessary to prevent damage to the pipe during the trench backfill compaction.

Where necessary, especially within and in close proximity of ponds and pond embankments, plugs should be provided within the bedding materials to prevent water seepage through bedding material,.

It is recommended that service trenches be backfilled with on-site native materials such that at least 96% of Standard Proctor Maximum Dry Density (SPMDD) is obtained in the lower zone of the trench and 98% of SPMDD for the upper 600 mm. However, prior to building the roads, the subgrade should be thoroughly proof-rolled and re-compacted to 98% of SPMDD to ensure uniformity in subgrade strength and support.

7 LIMITATIONS OF REPORT

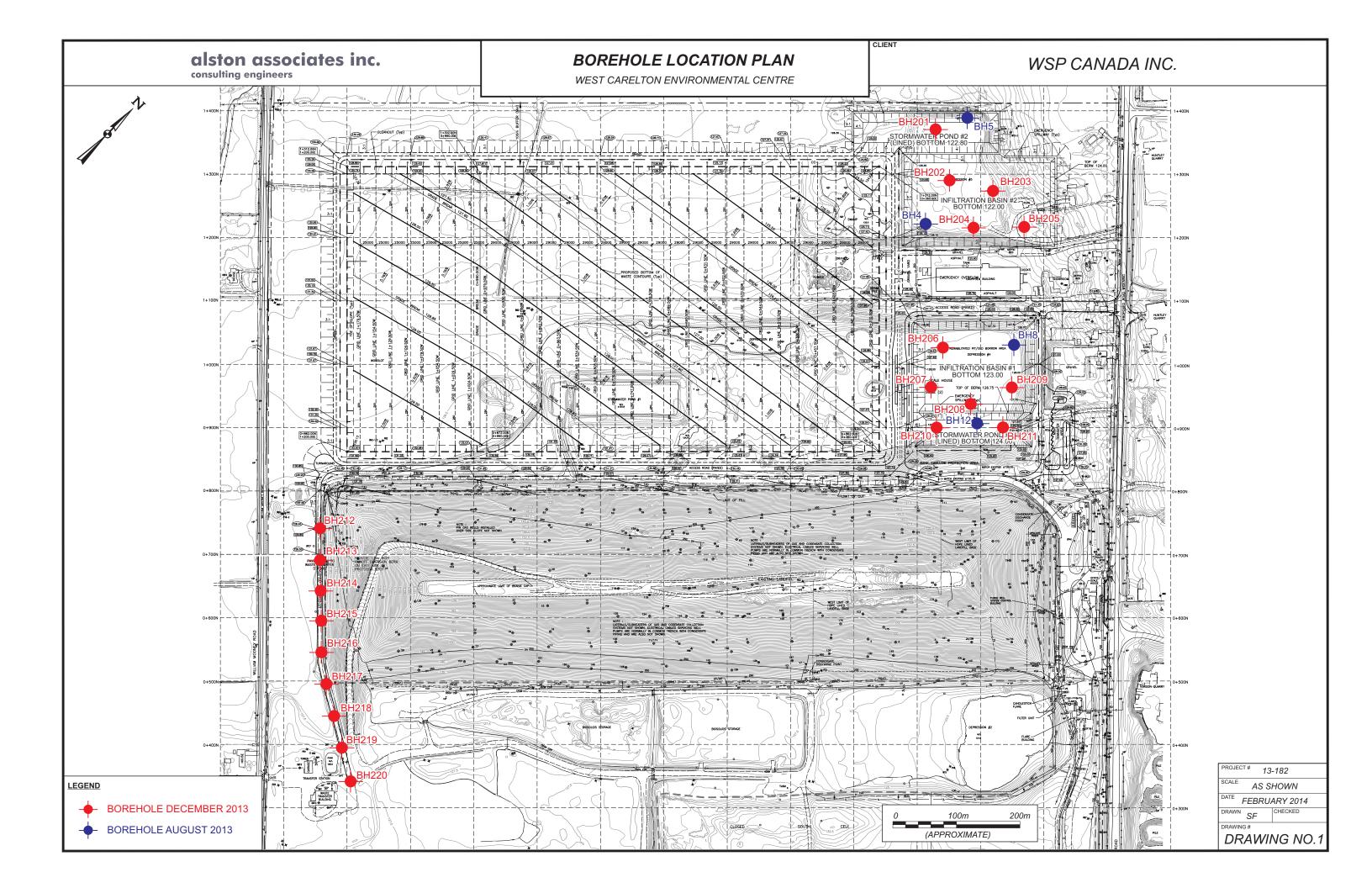
The Limitations of Report, as quoted in Appendix 'A', are an integral part of this report.

alston associates inc. V. NERSESIAN 33778705 WCE OF Vic Nersesian, P. Eng. 0 Vice President, Geotechnical Services

APPENDIX A LIMITATIONS OF REPORT

limitations of report

The conclusions and recommendations in this report are based on information determined at the inspection locations. Soil and groundwater conditions between and beyond the test holes may differ from those encountered at the test hole locations, and conditions may become apparent during construction which could not be detected or anticipated at the time of the soil investigation.


The design recommendations given in this report are applicable only to the project described in the text, and then only if constructed substantially in accordance with details of alignment and elevations stated in the report. Since all details of the design may not be known to us, in our analysis certain assumptions had to be made as set out in this report. The actual conditions may, however, vary from those assumed, in which case changes and modifications may be required to our recommendations.

This report was prepared for WSP Canada Inc. by Alston Associates Inc. The material in it reflects Alston Associates Inc. judgement in light of the information available to it at the time of preparation. Any use which a Third Party makes of this report, or any reliance on decisions which the Third Party may make based on it, are the sole responsibility of such Third Parties.

We recommend, therefore, that we be retained during the final design stage to review the design drawings and to verify that they are consistent with our recommendations or the assumptions made in our analysis. We recommend also that we be retained during construction to confirm that the subsurface conditions throughout the site do not deviate materially from those encountered in the test holes. In cases where these recommendations are not followed, the company's responsibility is limited to accurately interpreting the conditions encountered at the test holes, only.

The comments given in this report on potential construction problems and possible methods are intended for the guidance of the design engineer, only. The number of inspection locations may not be sufficient to determine all the factors that may affect construction methods and costs. The contractors bidding on this project or undertaking the construction should, therefore, make their own interpretation of the factual information presented and draw their own conclusions as to how the subsurface conditions may affect their work.

APPENDIX B DRAWING NO. 1: BOREHOLE LOCATION PLAN

APPENDIX C

AAI 2013 GEOTECHNICAL INVESTIGATION: LOGS OF BOREHOLES 3, 4, 5, 8 & 12

	NT: Waste Manag								- 1		ooon Sampling	DUN	~			
	JECT: Landfill Exp	bansion		PROJ							EV. (m) 123.27	BH No.:				
	TION: Carp, ON			NORT	-			36.91			STING: 346115.227		3-10			
SAMF		AUGER DRI	VEN	ar Streng		ORIN	IG		D	YNA	MIC CONE S	HELBY	\perp	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8	(kPa) 80 120 1 N-Value ws/300mr 40 60	● 60 n)		L W.C	C. LL 60 80		SOIL SYMBOL	SO DESCRI	IPTION	SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
- 0 - - - 0.5		Borehole cave-in at 3.4 m and water level at 2.6 m below ground surface on completion.				00					300 mm black reddish bro fine SAND, t	wn, damp		1A 1B	11	123 -
- - - - - - - -			4 12			14						brown		2	12	122.5 - 122 -
- 1.5 - - - 2 -			46	6		15					compa very de moist te	ense	,	3	46	121.5 - 121 -
- 2.5 	▼ -	Hard augering at 3.0 m	4	8		15 •					SILTY fine			4	48	120.5 -
- - - 3.5 -		Split spoon bouncing	38 /			9						TILL		5	38	120 - 119.5 -
- - 4 - - - - 4.5			83/250		5			0 . U. 49 .	90,00,00,00,00,00,00,00,00,00,00,00,00,0	very de wet, g SAND	grey		6	83/ 250	119-	
- 4.3 - - - - 5		50/10	b ø ▲					¢		rock frag			7	50/ 100	118.5 -	
	alste	n associates	inc						RV		END OF BOREHC Refusal to advance 5.03 m below gr	ment of augers at round surface.			set 2	013
		on associates onsulting enginee								GGED BY: KC DRILLING DATE: 9 August VIEWED BY: VN Page 1 of 1					st 2	013

	NT: Waste Manac JECT: Landfill Exp					HOD: AU						boon Sampling	BH No.:	Λ			
	ATION: Carp, ON	Dansion		<u> </u>						_		EV. (m) 118.60 STING: 346287.868					
		AUGER DRI	VEN				RING						HELBY	<u></u>			POON
SAIVI			Shea		ength						T		-	<u> _</u>			
Ê				(kPa)	•					SOIL SYMBOL		SO	П	SAMPLE TYPE	Ö		ELEVATION (m)
L) H	INSTRUMENTATION DATA	REMARKS		-Valu	20 160 Je	-				SYN		DESCR		Ш	LE 1	Î	'ATIC
DEPTH (m)			(Blov	vs/30	0mm) 0 80				LL 0 80	SOIL		DESCRI	FION	SAME	SAMPLE 1	SPT(N)	ELEV
- 0		Grass Surface.		100						×	X			Í			 118.5 -
Ē		Borehole dry and cave- in at 1.2 m below ground	12			5					X	compact, bro	own to grey		1	12	-
- 0.5		surface on completion.									X	sand and gr	avel, FILL				118 -
F				$\left \right\rangle$		5				Î	Î			h		73/	-
-1			7	3/22	5 🎽)					ij	very dense, ver SILTY SAND, tr			2	225	117.5 -
È.				and clay (TILL)													· · · · ·
- 1.5		Cobble/boulder		/		4				1(1)21		СОВВ	IFS	 		50/	-
Ē		encountered between	50/7	5▲		•						and BOU			3	75	117 -
		1.2 and 1.8 m depth.								ſ		END OF BOREHO					
												Refusal to advance 1.83 m below gr	ment of augers at				
												1.00 m below gi	ound Sundee.				
1																	
1				1													
1																	
1				1													
1																	
1																	
	alsto	inc.			-	1	OG	GED B	Y: K	$\langle C$	>	DRILLING DATE:	8 A	Augu	ist 2	013	
1		onsulting enginee							EWED				Page 1 of 1				

	NT: Waste Manag				THO								٨	٨		
	JECT: Landfill Exp	pansion		I					: VN	_	EV. (m) 118.60	BH No.:				
	ATION: Carp, ON	AUGER DRI	VEN				RING		4.465		ASTING: 346287.868	HELBY	<u>5-10</u> ∏		IT O	POON
SAIVI			Shea		ength		TING	1					<u> </u>	SPL		
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8	l-Valu	20 160 Ie					SOIL SYMBOL	SO DESCR		SAMPLE TYPE	SAMPLE NO.	(N)	ELEVATION (m)
DEP					0mm) 0 80				LL 0 80	SOIL			SAM	SAM	SPT(N)	ELEY
0 - - - 0.5	Casing Bentonite	Water level measured 0.3 m below ground surface on 9 August 2013.														118.5 -
- 1	Sand										Straight to 1.8 m	auger depth				118-
- - - 1.5	i screen (50 mm Diameter)	Cobbles/boulders encountered between 1.2 and 1.8 m depth.														117.5 -
-																
											END OF BOREHC Refusal to advance 1.83 m depth below	ment of augers at				
	alsto								ED BY: KC		DRILLING DATE: 8 August 20		013			
1	CC	onsulting enginee	rs				F	REVI	EWED	BY:	VN	Page 1 of 1				

	NT: Waste Manag							_					poon Sampling		5			
	JECT: Landfill Exp	pansion		<u> </u>	OJE								EV. (m) 117.58	BH No.:				
	ATION: Carp, ON			NC					551	1.25		•	STING: 346222.746	-	3-10 ∏			BOON
SAM		AUGER DRI	VEN Shea	r Stre	ength		ORI	NG] [) Y N/	AMIC CONE S	HELBY -	μ_	SPL	.11 5	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8	(kPa) 0 12 -Valu	20 160 le			DI 1	N C	LL		SOIL SYMBOL	SO DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
			(ыом 20 4							0 80)	SOI				SAN	SPT	
- 0 - - - 0.5		Borehole dry and cave- in at 1.5 m below ground surface on completion. Cobbles/boulders	Ę	0/7!	5	1	4					144044 1020044	100 mm T	OPSOIL			50/ 75	117.5 -
-		encountered between 0.3 and 3.0 m depth.										000000000000000000000000000000000000000			$\left \right $			117 -
- - 1 - - -			34 🛦				6					20220220200 20020000000000000000000000	dens very d moist t brov	ense o wet		2	34	116.5 -
- 1.5 - -		Water strike at 1.5 m depth.		87,	225		5						mediu coarse and GR	m to SAND		3	87/ 225	116 -
-2												0000	occasiona and bo					115.5 -
- 2.5				86/225 ▲ 5 86/225 ▲ 5										4	86/ 225	115 -		
- 3											0000000						-	
												END OF BOREHO Refusal to advance	ment of augers at					
												3.05 m below g	round surface.					
	alsto	on associates i	inc.					LOGGED BY				: K(C	DRILLING DATE: 8 August 2013			013	
1	CC	onsulting enginee	rs					R	EVI	EWE	D	3Y: '	VN	Page 1 of 1				

0 1 Casing Bencine 1.3 m being source 2013. 1 1 -0.5 Sand 3urace on completion, 1.4 m being source Diameter 0.0 and 2.4 m dopth. Straight auger to 1.8 m depth 1 1.5 T END OF BOREHOLE recountered between 0.0 and 2.4 m dopth. Straight auger to 1.8 m depth 1		NT: Waste Manag				THOE		_	 					E	٨		
AMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELEY SPLIT SPLIT BITELINE		•	pansion		<u> </u>					_							
Bit STRUMENTATION Description REMARKS Bit Will be will measured to the wide to th					·				0.95				-	3-10 ∏			
g b msTrueettATION DATA readwards 0.040 for an approx pt. W.C. LL b g b SOIL DESCRIPTION g b	SAM		AUGER DRI					RING			YNA T		HELBY -	Ш.	SPL	II S	
0 1 Casing Bencindia 13 method sequent surface on completion, 1.0 method sequent 2013. 1 1 1.0 Sand Screen (50) Sand and mocountered between 0.0 and 2.4 m depth. Straight auger to 1.8 m depth 1 1.1 The sequence of the sequence o	DEPTH (m)		REMARKS	40 8	(kPa) 30 120 I-Value vs/300r	160 nm)					SOIL SYMBOL			SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
	- 0.5	Bentonite Sand Sand and Sand and Screen (50	1.9 m below ground surface on completion, 1.0 m below ground surface on 9 August 2013. Cobbles/boulders encountered between	(Blov	vs/300r	nm)						Straight to 1.8 m END OF BOREHC Refusal to advance	auger depth DLE ment of augers at		SAMP		117.5 - 117 - 116.5 - 116.5 - 115.5 -
alston associates inc. Logged BY: KC DRILLING DATE: 8 August 201 consulting engineers REVIEWED BY: VN Page 1 of 1				<u>. I</u>	I						DRILLING DATE: 8 August 20		013				

	NT: Waste Manag JECT: Landfill Exp				THOD		_				poon Sampling EV. (m) 121.84	BH No.:	8			
	TION: Carp, ON			+	RTHIN						STING: 346519.626					
	-	AUGER DRI	VEN		Ν	COR	ING			•	·	HELBY	Π		IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8	ar Strei (kPa) 30 120 J-Value vs/300	0 160 e mm)		PL V			SOIL SYMBOL	SO DESCRI		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
0.5	Casing Bentonite	Borehole water level measured dry on completion and 4.8 m below ground surface on 9 August 2013.	7	40 60	80	5	20 40	<u> </u>	0 80					1		121.5 -
- - - - - - - - - - - - - - - - - - -			2			4					black s trace some or FIL	e to ganics		2	2	121 - - - 120.5 -
-2	Sand		2			5								3	2	120 -
- 2.5 - 3	diameter)		29			3					compact t damp to mo GRAVELL	ist, brown		4A 4B	29	119.5 – - - - - - - - - - - - - - - - - - - -
- 3.5		Hard augering at 3.0 m depth.	42			4				0%20%20%20% 0%20%20%20%	with sor and trac	ne silt		5	42	
- 4 - 4 			42			4				20020022022	dense, I SAND and	GRAVEL		6	42	118 - - - - - - - - - - - - - - - - - - -
- - - - - - - - - -		Split spoon bouncing at 5.0 m depth	5	51 A		4				268 268 268 268 268 268 268 268 268	trace			7	51	117 -
	alsta	on associates	inc.					0000	GED B	Y: KI	Refusal to advance 5.2 m below gro	ment of augers at ound surface.	7 4	Augu	ust 2	013
												DRILLING DATE:	7 /	Augu	ist 2	013
	CC	onsulting enginee	rs				R	EVII	EWED	BY:	VN	Page 1 of 1				

	NT: Waste M JECT: Landfi												poon Sampling EV. (m) 121.96	BH No.:	1	2		
	ATION: Carp,		ansion										STING: 346499.092					
	PLE TYPE	_	AUGER DR	VEN	l						11.2	•		HELBY	$\overline{\mathbb{T}}$		IT S	POON
	INSTRUMENT, DATA		REMARKS	4	Shea (0 8 N- Blow	(kPa) 0 12 -Valu s/300	ength 20 160 lie Dmm)		PL	W.0	C. LL	<u> </u>	SO DESCRI	IL				
(iii) HLdaan 0 - 0.5 - 1 - 1.5 - 2.5 - 3 - 3.5 - 4 - 4.5 - 5.5	INSTRUMENT, DATA	ATION ng ponite	REMARKS Borehole water level measured 2.84 m below ground surface on completion of drilling and 2.8 m below ground surface on 8 and 9 August 2013.	4 ((2 3 3 5 5	Shea (0 8 N- Blow 0 4 47 47	(kPa) 0 12 -Valu s/300 0 6	ength 20 160	5	PL 20 7	W.0	2. LL	SOIL SYMBOL	SO	and and and f organics eces t, wet brown ace silt		ON 34WPLE NO. 2 3 4 5 6 7 7	(N)Lds 3 5 47 3 29 13	ш NOLLYAN 121.5 - 121.5 - 121.5 - 121.5 - 120.5 - 119.5 - 119.5 - 118.5 - 118.5 - 117.5 -
-6.5			Hard augering at 7.3 m depth. Split spoon bouncing	£	30/28			6					very loose Aard, g SILTY (some sand a (TILI END OF BOREHO Refusal to advancer 7.9 m below gro	CLAY and gravel L) DLE ment of augers at		8	2 50/ 25	115.5
				Ļ										1				
	C		on associates onsulting enginee		с.				- F		GED			DRILLING DATE: Page 1 of 1	7 A	λugι	ust 2	013

	NT: Waste Manag JECT: Landfill Exp				HOD								on Testing . (m) 121.96	CPT No) .:	12	: A	
	TION: Carp, ON			NOF	RTHIN	IG:	501	614	4.28	32	-		ING: 346499.092	PROJECT NO.:				
SAM	PLE TYPE	AUGER DR	IVEN				COR	ING				DYNA	MIC CONE SI	HELBY	\square	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	4 Eq (Shear (kl (kl 0 80 juivaler Blows/ 0 40	⊃a) <u>120 ^</u> nt N-V 300mi	● 160 alue n)		PL 1)	SOIL SYMBOL	SO DESCRI		SAMPLE TYPE	SAMPLE NO.	DCPT(N)	ELEVATION (m)
- 0.5 - 1 - 1.5													Straight to 1.5 m	auger depth				121.5 121 120.5
- 2			5 3														 5 3	12(119.5
- 3			▲ 4 ▲ 7 ▲ 6														4 7 6	119
- 3.5 - 4 - 4.5			4 4 6										Dynai Con				4 4 6 10	118
- 5			▲ 7 ▲ 3 ▲ 4										Penetra Tes	ation			7 3 4	11 [.] 116.:
- 6 - 6.5			\$ 5 3	19													5 9 19 34	11) 115.:
- 7 - 7.5			$ \rangle$	15													15 19 26	11: 114.
													END OF DYNAMIC PENETRATION T					
	alsto	on associates	inc	C.					OGC	GED	BY	: KC	 C	DRILLING DAT	E: 7 /	L Augu	ust 2	013
	cc	onsulting enginee	ers					R	EVI	EWE	ED I	BY: \	VN	Page 1 of 1				

APPENDIX D BOREHOLE LOGS

CLIE	NT: WSP Canada	a Inc.		ME	THC	DD:	Au	geri	ing a	and	Sp	lit S	poon Sampling					
PRO.	JECT: WCEC Lan	dfill Expansion		PR	OJE	СТ	ENC	GINE	ER	: VI	۷	ELI	EV. (m) 117.3	BH No.:	2	01		
LOCA	TION: Carp, ON			NC		HING	B: 5	5015	5513	3		EA	STING: 423788	PROJECT NO.: 13	8-18	2		
SAM		AUGER DRI	VEN				ORI	NG			D	YNA	MIC CONE S	HELBY	Ц.	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8	l-Valu vs/300	20 16 le Dmm)	0			W.C.			SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
- 0.5		Borehole open and groundwater level at 1.8 m below ground surface on completion.			1/25(5				,		200 mm T damp, brown with org trace silt and very d brown	gravelly sand ganics d clay, FILL ense		2	71/ 250	117 - 116.5 -
- - 1.5 - -	⊻=	Water strike at 1.5 m depth	50/12	5 🔺								20020020000000000000000000000000000000	and GF some rock	RAVEL		3	50/ 125	- 116
													END OF BOREHO Refusal to advance 2.0 m	ement of augers at depth.				
		on associates						-				: KC		DRILLING DATE:	19	Dec	;. 20	13
I	C	onsulting enginee	rs					R	EVI	EWE	D E	3Y: '	VN	Page 1 of 1				

LOCATION: Carp, ON NORTHING: 5015467 EASTING: 423857 PROJECT NO.: 13-182 SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SPOON (i) INSTRUMENTATION DATA REMARKS Shear Strength (kPa) PL W.C. LL 20 40 60 80 0 SOIL DESCRIPTION 0 0 0 Borehole dry and open on completion. Borehole dry and open on completion. PL W.C. LL 20 40 60 80 0 brown sand and gravel with rock fragments some silt, some organics, FILL 1 117.5 1.5 45 3 45 3 0 SAND, trace silt trace gravel 2 45 116.5		IT: WSP Canada							_			- 1		Doon Sampling EV. (m) 117.68	BH No.:	2	02)	
SAMPLE TYPE AUGER DENKEN CORING DYNAMUC CONE SHELEY SPLIT SPOON BUILD ANTATON REMARKS OF 10 00 00 00 00 00 00 00 00 00 00 00 00					I							-						-	
Spectrametration Solution 0 Description 117.5 Description 12 Description 13 Description 14 Description 15 Description 16 Description 172 Description 18 Description 19 Description 19 Description 10 Descrip						_	2			101				· · · · · · · · · · · · · · · · · · ·		$\frac{10}{\pi}$			
0 Berehole dy and open on completion. 1 17.5 0.5 3 dense, brown SAND, race sit 2 45 1.5 72275 72275 3 3 27 16 2 10 72275 3 3 27 16 1.5 72275 72275 3 3 27 16 2 10 72275 72275 3 3 27 16 1.5 72275 72275 3 3 27 16 3 3 27 16 3 3 27 16 3 3 3 27 16 3	U/NIVII			Shea		ength										<u> </u>			
0 Berehold at y and open on completion. 117.5 1 15 3 1.5 722.75 3 722.75 722.75 3 1.5 722.75 3 1.6 722.75 3 1.7 117.5 2 117.5 722.75 722.75 1.6 117.5 722.75 722.75 1.6 117.5 722.75 116.5 722.75 117.5 722.75 117.5 722.75 117.5 1.7 117.5 1.7 117.5 1.6 117.5 1.7 117.5 1.7 117.5 1.7 117.5 1.7 117.5 1.7 117.5 1.7 117.5 1.7 117.5 1.7 117.5 1.7 117.5 1.7 117.5 1.7 117.5 1.7 117.5 1.7 117.5	DEPTH (m)		REMARKS	40 8 N (Blow	80 12 I-Valu /s/30	20 16 Je 0mm))						SOIL SYMBOL			SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (n
1 45 3 dense, brown SAND, trace sit 2 45 -2 72/275 72/275 16.5.	-											> > > >		with rock fr	ragments		1		117.5 - - - - -
2 T2275 S SAND and GRAVEL Trace rock fragments 3 3 72/ 116- SAND and GRAVEL Trace rock fragments 4 3 72/ 116- SAND and	- - - - - -				45			3						SAND, tr	ace silt		2	45	116.5 -
Refusal to advancement of augers at 2.1 m depth.	-			7:	2/27	5 🛦							002002002002 002002002	SAND and trace rock f	GRAVEL ragments		3	72/ 275	116 -
alston associates inc.	-													Refusal to advance	ment of augers at				
alston associates inc.																			
		alsto	on associates	inc.						OGG	GED	BY:	: K(2	DRILLING DATE:	19	Dec		13
consulting engineers REVIEWED BY: VN Page 1 of 1																		0	-

CLIEI	NT: WSP Canada	Inc.		METH	HOD:	Auge	ring a	and S	plit S	poon Sampling					
PRO.	JECT: WCEC Lan	dfill Expansion		PRO.	JECT	ENGIN	IEER:	VN	EL	EV. (m) 117.35	BH No.:	2	03	<u> </u>	
LOCA	TION: Carp, ON			NOR	THINC	G: 501	15500)	EA	STING: 423922	PROJECT NO.: 13	8-18	2		
SAM	PLE TYPE	AUGER DRI	VEN			ORING	3		DYNA	AMIC CONE S	HELBY	\square	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8	ar Streng (kPa) 30 120 ⁻ V-Value vs/300mr 40 60	● 160 m)		W.C. 40 60		SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
- 0 - - - 0.5		Borehole open and groundwater level at 1.8 m depth on completion.				5	40 60	80	00000000000000000000000000000000000000	bro SAND and trace trace to s	GRAVEL silt		1	5	117 -
- - - - - - - -			5	50/125						very dens brown trace rock	SAND		2	50/ 125	116.5 - 116 -
- 1.5 - - - - - - 2 - - - - -	∑ ≂	Water strike at 1.5 m depth.	23							compact wet, c SAI with inclu	ND Isions of		3	23	115.5 -
- 2.5			59/2	225						rock fra very dense	gments		4	59/ 225	115 -
										END OF BOREH Refusal to advance 2.7 m	ement of augers at				
		on associates				- H		ED B			DRILLING DATE:	19	Dec	: 20	13
	CC	onsulting enginee	rs				REVIE	WED	BY:	VN	Page 1 of 1				

CLIENT: WSP Canada Inc.			Spoon Sampling	BH No.:	201
PROJECT: WCEC Landfill Expansion	PROJECT ENG		ELEV. (m) 117.79		
LOCATION: Carp, ON	NORTHING: 50		EASTING: 423936	PROJECT NO.: 13-	-
SAMPLE TYPE AUGER DRIVEN	ar Strength			HELBY	SPLIT SPOON
(E) TH H L INSTRUMENTATION DATA REMARKS (Blo (Blo) (Blo)	(kPa) <u>80</u> 120 160 N-Value ws/300mm) P	L W.C. LL		IL IPTION	SAMPLE TYPE SAMPLE NO. SPT(N) ELEVATION (m)
0 Borehole dry and open			15.7 129		1
On completion. On completion. Cobbles/boulders encountered between O.63 and 1.5 m depth.	50/125	\$2.952.952.952.952.9552.9552.9552.9552.9	brov SAND and trace rock f	GRAVEL ragments e, brown GRAVEL	2 2 117.5 - 117 - 116.5 -
alston associates inc.		LOGGED BY:	END OF BOREHC Refusal to advance 1.6 m d	DLE ment of augers at	
consulting engineers		REVIEWED BY		Page 1 of 1	

LOCATION: Carp. ON NORTHING: 5015490 EASTING: 423996 PROJECT NO: 13-182 SAMPLE TYPE A JUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SP (i) INSTRUMENTATION DMAA REMARKS More Structure (Markow) More Structure (Markow) SPLIT SP SPLIT SP (i) INSTRUMENTATION DMAA REMARKS More Structure (Markow) SPLIT SP SOIL SPLIT SP (i) Barehole dry and open on comploiton. IIII SP IIII SP IIII SP IIII SP (i) Barehole dry and open on comploiton. IIII SP IIII SP IIII SP IIIII SP (i) IIIII SP IIIII SP IIIII SP IIIII SP IIIII SP (i) IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		IT: WSP Canada									poon Sampling	BH No.:	21	05		
SAMPLE TYPE AUGE DRVM CORINC DYNMUC CONE SHELEY SPLT SP INSTRUMENTATION DATA REMARCO Image: Second Secon									VIN						,	
State Strings Solution 0 Borchold dry and open an completion. 9 0				VEN		-				_		-			IT S	POON
0 Borehold dy and deen on completion. 200 mm TOPSOIL 1 1 1 1 1 1 1 1 1 1 1 1				Shea 40 8 N (Blow	(kPa) 0 120 -Value rs/300m	nth 160 m)	PL	W.C.			SO	IL	ŤΤ			ELEVATION (m)
-0.5			Borehole dry and open	4	0 60	80 -		40 60	80	0)	200 mm T	OPSOIL			0)	122.5 ·
3 3 <td>- 1</td> <td></td> <td>on completion.</td> <td></td> <td>54</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> brown to da sand and very with inclu dense rock frag</td> <td>ark brown I gravel sions of Iments</td> <td></td> <td>2</td> <td>54</td> <td>122 · 121.5 · 121 ·</td>	- 1		on completion.		54						brown to da sand and very with inclu dense rock frag	ark brown I gravel sions of Iments		2	54	122 · 121.5 · 121 ·
24 16 very stiff, moist, grey 1 5 16 16 16 0 <							3				moist, brow SILTY (CLAY		3		120.5
-3.5 16 17 15 15 15 15 15 16 17 15 17 15 17 15 17 16 10 11 10 11 10 11 10 11 10 11 10 11 <				24							very			4	24	120
-4.5 -5 -15 5 -5 -5 -7 -6 -6 -6 -6 -6 -7 <	- 3.5			16							SILTY CLAY,	some sand		5	16	119.5 119
-5.5 -6.5 -7.5				▲ 16						000000000000000000000000000000000000000				6	16	118.5
stiff moist, grey SILTY CLAY trace sand and gravel (TILL) -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5	- 5			▲ 15										7		118 117.5
7.5 P.7.5 P.7.5 P.ND OF BOREHOLE Refusal to advancement of augers at 7.6 m depth. P.ND OF BOREHOLE Refusal to advancement of augers at 7.6 m depth.	- 6			10							moist, SILTY trace s and gr	grey CLAY sand ravel		8	10	117 116.5 116
END OF BOREHOLE Refusal to advancement of augers at 7.6 m depth.						222+										115.5
											Refusal to advance	ment of augers at		Ø		115
		alsta	on associates	inc.	<u> </u>		•'T	LOGGI	ED B	Y: K(C	DRILLING DATE:	20	Dec	. 20	13
Consulting engineers REVIEWED BY: VN Page 1 of 1																

	NT: WSP Canada										it Sp	ooon Sampling	DUINI	~	~	<u> </u>	
	IECT: WCEC Lan	dfill Expansion		-	ROJECT						ELE	EV. (m) 121.96	BH No.:)	
	TION: Carp, ON			N								STING: 424026	PROJECT NO.: 13	3-18			
SAMF		AUGER DRI	VEN			COR	ING			D	YNA	MIC CONE	HELBY		SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 (Blo	N-Valu ws/30) 20 160 Je 0mm)			W.C.			SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
(ii) HLdag 0 - 0.5 - 1 - 1.5 - 2.5 - 3.5 - 3.5		REMARKS Borehole dry and open on completion. 25 mm ice and 200 mm frost penetration at borehole location.	(Bid 20 5 14 28	80 12 N-Valu ws/30 40 6	20 160 Je		20 4	W.C.					IPTION DPSOIL t, moist brown es SAND clay gravel brown and grey lense brown SAND _L) DLE ement of augers at		1 2 3 4	5 14 28	NOLEYATI 121.5
	alete	on associates										<u></u>					12
								.OGG					DRILLING DATE:	18	Dec	20 20	13
	C	onsulting enginee	rs				F	REVIE	WEI	DB	Y: \	/N	Page 1 of 1				

	NT: WSP Canada				ROJEC		_	-		EV. (m) 121.96	BH No.:	2	07	7	
LOCA	TION: Carp, ON			N	ORTHIN	IG: 5	0152	200	EA	ASTING: 424053	PROJECT NO.: 1				
SAM	PLE TYPE	AUGER DRIV				CORI	NG		DYN	AMIC CONE	SHELBY		SPI	LIT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 (B	(kPa 80 1 N-Va lows/3	120 160	A		.C. LL 60 8	SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
0 - 0.5		Borehole dry and cave- in at 3.7 m below ground surface on completion. 25 mm ice and 200 mm								600 mm ⊺	TOPSOIL		1		121.5
- 1		frost penetration at borehole location.	:	32						dense, m silty sand with FII	some gravel		2	32	121
- 1.5 - 2				55						very c damp, da silty sa inclusions of re	rk brown nd with		3	55	120.5
- 2.5			57	7/275						FII	-L -		4	57/ 275	
- 3 - 3.5			21			2	2			compa SA some trace trace	ND e silt clay		5	21	119 118.5
- 4		300 mm of "blowback" in augers after obtaining Sample 6		18									6	18	118
- 4.5 - 5				18						com wet, b SILTY	brown		7	18	117.
- 5.5												-			116.
- 6 - 6.5			1	4						com wet, b SIL ⁻ SAND`	prown T to		8	14	110 115.
•7			▲ 1: ▲ 1											13 15	11:
- 7.5			26	1						Dyna Co Penet Te	ne ration			11 26	114.5
- 8			28							END OF BOREH				28	114
										Refusal to advanc	ement of dynamic				
	alata	n amodatos							<u> </u>						
		on associates i onsulting engineer		•			-				DRILLING DATE: Page 1 of 1	18	Deo	c. 20)13

	NT: WSP Canada				<u>METHOD</u> PROJEC ⁻		_			- 1		poon Sampling EV. (m) 121.95	BH No.:	2	30	3	
LOCA	ATION: Carp, ON			1	NORTHIN	IG: 5	5015	5224	1		EA	STING: 424119	PROJECT NO.: 13				
SAM	PLE TYPE	AUGER DRIV				CORI	NG			D	YNA		SHELBY		SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 (B	(kl 80 N-V Blows/	Strength Pa) 120 160 'alue 300mm) 60 80		PL V 0 40		LL) 80		SOIL SYMBOL		DIL IPTION	SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
0		Borehole dry and cave- in at 3.7 m below ground surface on completion. 100 mm ice and 200 mm frost penetration at											n to black ne gravel LL		1		121.5 ·
-1		borehole location.	4										OPSOIL kimately		2	4	121 · 120.5 ·
- 1.5 - 2				18								1.4 m	thick)		3	18	120.0
- 2.5			4									loc wet, silt, s			4	4	119.5 · 119 ·
- 3 - 3.5			6									and ç Fl	jravel LL		5	6	118.5
- 4		Water strike at 3.8 m	1	15		1	9					wet, t SA			6	15	118
- 4.5 - 5		300 mm "blowback" in augers at Sample 7.		18											7	18	117.5 117
- 5.5												wet, t	pact prown Y SILT				116.5
- 6 - 6.5		Augers grinding	30									trace	gravel trace rock fragments		8	30	
-7												END OF BOREH	OLE				115
												Refusal to advanc 7.2 m	ement of augers at				
		n annaistas !	n 2				-1							Ļ	_		
		on associates i						OGG	GED	BY:	: KC	5	DRILLING DATE:	18	Dec	20)13
	CC	onsulting engineer	rs				R	EVI	EWE	DE	3Y: '	VN	Page 1 of 1				

	NT: WSP Canada						gering GINEE				ooon Sampling EV. (m) 121.95	BH No.:	2	09)	
LOCA	TION: Carp, ON	-		NO	RTHIN	NG: 5	501528	87			STING: 424150	PROJECT NO.: 13				
SAMF	PLE TYPE	AUGER DRI	VEN	_!	Η	COR	NG		C	YNA		HELBY	Π	SPI	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 (Blo	ear Strei (kPa) 80 120 N-Value ows/3000 40 60	0 160 e mm)		PL W.0 0 40			SOIL SYMBOL	SO DESCRI		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
0-0.5		25 mm ice and 200 mm frost penetration at borehole location.							<u> </u>		brown silt and FIL	gravel		1		121.5 -
- 1			9								buried TC (approximately 7			2	9	121 - 121 - 120.5 -
- 1.5 - 2			•9								loose	k brown		3	9	120.0
- 2.5			34	\mathbf{i}							sand, trac dense some or FIL	e gravel ganics		4	34	119.5 - 119 -
- 3 - 3.5				48							dense			5	48	118.5 -
- 4		Hard augering at 3.8 m depth	50/	75 🔺							SAN with inclus rock frag	sions of		6	50/ 75	118 -
- 4.5 - 5			50/	75 🔺							very dense			7	50/ 75	117.5 - 117 -
											END OF BOREHC Refusal to advance 5.2 m d	ment of augers at				
	- الماني	n amagiatat											Ĺ		_	
		on associates						GED				DRILLING DATE:	18	Deo	c. 20	13
	CC	onsulting enginee	rs				RE\	/IEW	ED E	3Y: \	VN	Page 1 of 1				

CLIEI	NT: WSP Canada	a Inc.		MET	HOD:	Au	gering	and	Sp	lit Sp	boon Sampling					
PRO.	JECT: WCEC Lar	dfill Expansion		PRO	JECT	EN	GINEE	r: VI	N	ELE	EV. (m) 121.97	BH No.:	2	<u>10</u>		
LOCA	ATION: Carp, ON			NOR	THIN	G: 5	50151	61		EA	STING: 424102	PROJECT NO.: 13	3-18	2		
SAM	PLE TYPE	AUGER DRI	VEN			COR	ING		с	OYNA	MIC CONE S	HELBY	\square	SPL	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8 N (Blov	ar Stren (kPa) 30 120 I-Value vs/300m	160 1m)	N	PL W.(SOIL SYMBOL	SO DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
- 0 - - - 0.5		Borehole dry and cave- in at 2.3 m below ground surface on completion. 100 mm ice and 200 mm frost penetration at		10 60	80	2	0 40	60 80	<u>,</u>		wet, bi sandy FIL	/ silt		1		121.5 -
- - - - - - - -		borehole location.	28								very stiff, mo clayey silt, t some grav	race sand		2	28	121 -
- 1.5 - - - 2			14								compact	moist		3	14	120.5 - 120 -
- - - 2.5 - -			4								gre sandy FIL loose	/ silt		4	4	119.5 -
- 3 - - - 3.5			50/12	5 🔺						200 200 200 200 200 200 200 200 200 200	very di wet, g	grey		5	50/ 125	- 119
- - - - - -		7	75/225						002002002002	SAND and with inclu rock frag	sions of gments		6	75/ 225	118 -	
										END OF BOREHO Refusal to advance 4.3 m c	ment of augers at					
	alst	on associates	inc.					GED	BY	: КС	;	DRILLING DATE:	18	Dec	. 20	13
		onsulting enginee						/IEWE				Page 1 of 1				

	NT: WSP Canada				ROJEC		-	_			boon Sampling EV. (m) 122.52	BH No.	: 2	11		
LOC	TION: Carp, ON			N	ORTHIN	NG: 5	015	230		+	STING: 424181	PROJECT NO.: '				
SAM	PLE TYPE	AUGER DRI	VEN		X	CORI	NG		[DYNA	MIC CONE S	HELBY	\square	SP	LIT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 (Blo	(kPa 80 1 N-Val ws/30	20 160	A		/.C. LL 60 8		SOIL SYMBOL	SO DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
0		Borehole dry and cave- in at 3.7 m below ground surface on completion. 300 mm frost penetration at borehole									dark b silty s some ç FIL	and Jravel		1		122.5 122
-1		location.		51							very dens SILTY S trace g	SAND		2	51	121.5
- 1.5 - 2			39								dense			3	39	121 120.5
- 2.5			24								compact	moi	o	4	24	120
- 3 - 3.5			23 🛦								SILTY			5	23	119.5 119
• 4			25 🔺									w	et	6	25	118.5
- 4.5 - 5 - 5.5			28 🛦								comp wet, b medium trace g	rown SAND		7	28	118
- 6		Augers grinding	32	•						200 200 200 200 200 200 200 200 200 200	dense wet, g			8	32	117 116.5
- 6.5 - 7										102 102 102 102 302 002 002 102	SILTY S trace g some rock f (TIL	ravel fragments				116 115.5
- 7.5			50/ 2	25						10 - 20 10 - 20 10 - 20	Very dense END OF BOREHO Refusal to advance	ment of augers a	ıt	<u>9</u>	50/ \25	115
											7.6 m c	ieptn.				
	aleta	on associates i	inc											Ļ		
								OGGE				DRILLING DATE	: 18	Dec	c. 20	13
	CC	onsulting enginee	rs				R	EVIEW	ED	BY: '	VN	Page 1 of 1				

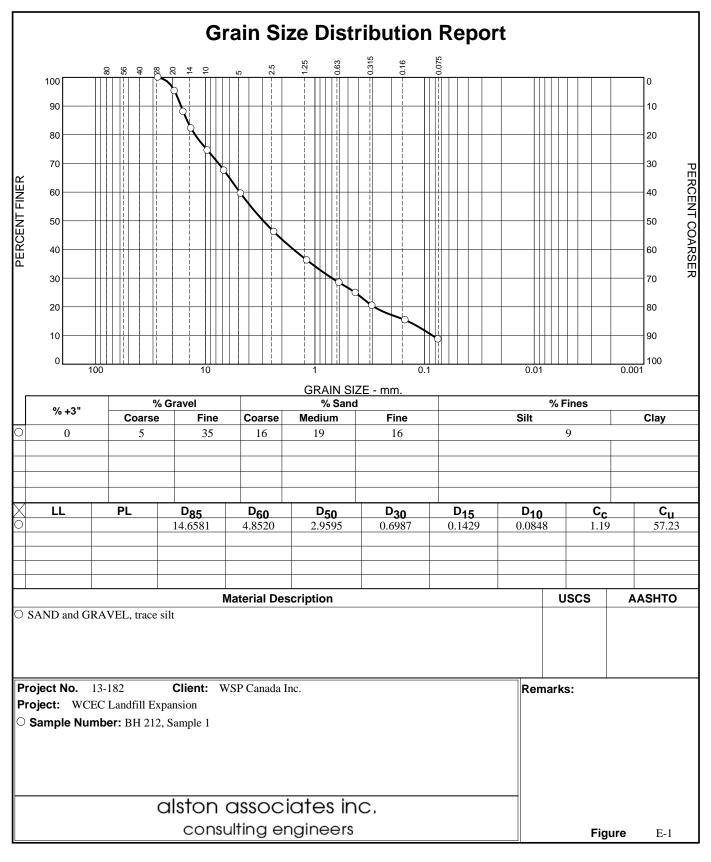
	NT: WSP Cana														poon Sampling		2	11	`	
			dfill Expansion									R: V	N	 	EV. (m) 98.33	BH No.:				
	TION: Carp, C	_				NC	_	-	G: {			39			STING: 423467	PROJECT NO.: 13	3-18 Ⅲ			
SAM	PLE TYPE		AUGER DR			ar Str	enati		COR	ING	j			υννγ Γ		HELBY	Ш_			POON
DEPTH (m)	INSTRUMENTAT DATA	ION	REMARKS	4	10 8 N	(kPa) 30 12 I-Valu vs/30 40 6) 20 10 Je 0mm	60 i)). LL		SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
- 0			Borehole dry and open						4		<u>+0 (</u>			XX			Ň	1		
- - - - - - - - - - - - - - - - - - -			on completion. 200 mm frost penetration		5	0/12	5		4						sand and FIL very dense	d gravel L		2	50/ 125	98 - - - 97.5 -
- - - 1.5 -				4	16										very stiff, d clayey silt, t and grav	trace sand el, FILL		3	16	97 - - - -
															END OF BOREHO Refusal to advance 1.8 m o	DLE ement of augers at				
	al		on associates		с.					-				': K0		DRILLING DATE:	19	Dee	. 20	13
		co	onsulting enginee	ers						F	REV	IEW	ED	BY:	VN	Page 1 of 1				

	NT: WSP Canada							_					poon Sampling	BH No.:	2	17	2	
	JECT: WCEC Lan	dfill Expansion		-						: VN	1		EV. (m) 98.30	1				
	ATION: Carp, ON					-				2			STING: 423500	PROJECT NO.: 1	3-18			
SAM		AUGER DRI	VEN Shea	ar Stre	ength		OR	ING)YNA		SHELBY	╨	1		POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 8	(kPa) 30 12 J-Valu vs/300	20 16 1e 0mm)	0				. LL 0 80		SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
- 0.5		Borehole dry and open on completion. 200 mm frost penetration					• 6						gravell trace FII	e silt		1		98 -
- - - - - 1					67 •								hard, moist, clayey silt, and grav	trace sand		2	67	97.5 -
- 1.5			▲15										stiff, mois clayey silt, trace orga	trace sand		3	15	97 - 96.5 _
	alste	on associates	inc.						.06	GED	BY		END OF BOREH	DLE DRILLING DATE	19		- 20	13
		onsulting enginee								EWE				Page 1 of 1				

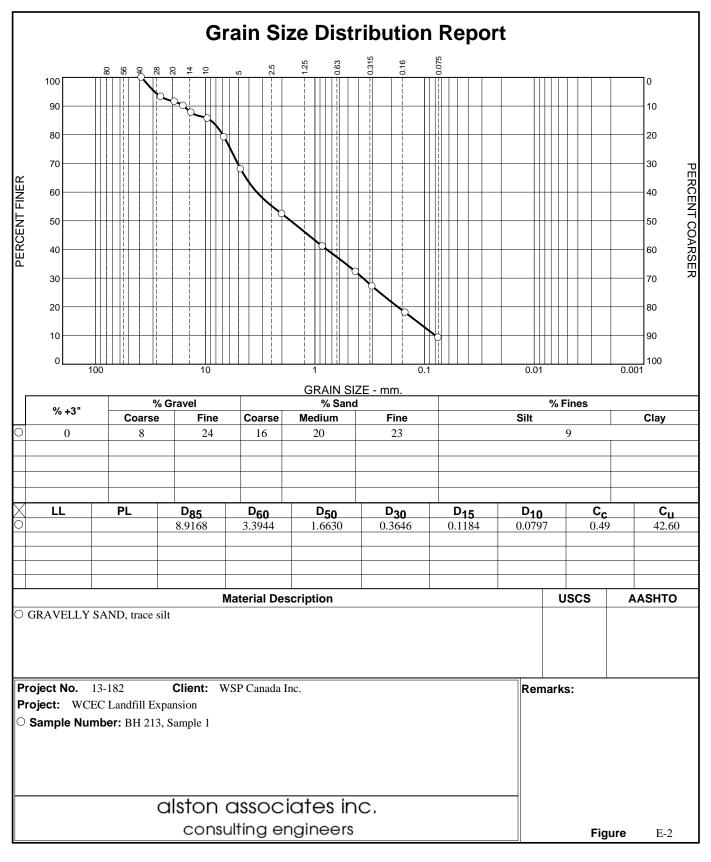
OLITATION Mathematical and construction PROJECT NUCC Landfill Expansion PROJECT ENGINEER: VN ELEV. (m) 98.11 BH No.: 214 LOCATION: Carp, ON NORTHING: 5014315 EASTING: 423534 PROJECT NO:: 13-182 SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SF (i) INSTRUMENTATION REMARKS 40, 80, 120 160 0 0 SOIL DESCRIPTION 0 0 0 Borehole dry and open on completion. 20, 40, 60, 80 20, 40, 60, 80 20 40, 60, 80 2 1 2 1 2 3 42 1.1.5 Instrumentation 42 Instrumentation Instrumentation 2 3 42 3 42 3 42 3 42 3 42 3 42 3 42 3 42 3 42 3 42 3 42 3 42 3 42 3 42 3 42 3 42 3 42 42 42 42 42 42 42 42 42
SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SP (E) INSTRUMENTATION REMARKS 40 80 120 160 0 0 SOIL U U 0 0 Source SOIL U U U U 0 0 0 N-Value 0
INSTRUMENTATION DATA REMARKS Shear Strength (kPa) O SOIL DESCRIPTION O 0 Borehole dry and open on completion. 200 mm frost penetration 20 40 60 80 20 40 60 80 0 Sand and gravel FILL 1 1.5 1.5 42 1 1 3 42
INSTRUMENTATION DATA REMARKS (kPa) 40 80 120 160 N-Value (Blows/300mm) 20 40 60 80 representation SOIL DESCRIPTION Instruction 0 Borehole dry and open on completion. 200 mm frost penetration Borehole dry and open on completion. 200 mm frost penetration Instruction Soil 20 40 60 80 Instruction Instructio
0 Borehole dry and open on completion. 20 mm frost penetration 3 42 -0.5 -1.5 42 -1 -1 -1.5 -1.5 -1.5 -1.5 -1.5
1 42 silty sand 2 1.5 42 hard, dark brown 3
-1.5 clayey silt, trace sand 3 42 and gravel, FILL
Alston associates inc.
consulting engineers REVIEWED BY: VN Page 1 of 1

LOCATION: Carp, ON NORTHING: 5014281 EASTING: 423566 PROJECT NO.: 13-182 SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SPC (i) INSTRUMENTATION DATA REMARKS 40 80 120 160 N-Value (Blows/300mm) 20 40 60 80 PL W.C. LL 20 40 60 80 0 9 SOIL DESCRIPTION IIII VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	6 PROJECT NO.: 13-182											NT: WSP Canada Inc. ECT: WCEC Landfill Expansion TION: Carp, ON								
SAMPLE TYPE AUGER DRIVEN CORING DYNAMIC CONE SHELBY SPLIT SPC (E) INSTRUMENTATION DATA REMARKS Shear Strength (kPa) 0 SOIL U			+						_		dfill Expansion									
INSTRUMENTATION DATA REMARKS Shear Strength (kPa) O SOIL DESCRIPTION O 0 Borehole dry and open on completion. 200 mm frost penetration 20 40 60 80 20 40 60 80 0 gravelly sand trace to some silt FILL 1 2 2 2 3<			-	31			-	_												
INSTRUMENTATION DATA REMARKS (KPa) 40 80 120 160 N-Value (Blows/300mm) 20 40 60 80 PL W.C. LL 20 40 60 80 O B 0 SOIL DESCRIPTION Image: Column of the second seco	■		DYN/		G	ORIN					AUGER DR		SAM							
0 Borehole dry and open on completion. 1 3 3 3 1	SOIL CRIPTION (m)		SOIL SYMBOL				50)	a) 120 16 lue 00mm	(kP 0 80 N-Va Blows/3	4	REMARKS		DEPTH (m)							
1 18 19 10 <t< td=""><td>ravelly sand 1 ce to some silt 98-</td><td>trace to s</td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td>on completion. 200 mm frost</td><td></td><td>_ 0 _ _</td></t<>	ravelly sand 1 ce to some silt 98-	trace to s					3				on completion. 200 mm frost		_ 0 _ _							
-1.5 Clayey silt, trace sand 3 18 and gravel, FILL	and, trace gravel 97.5					6 H-1							- - - - 1							
	y silt, trace sand 3 18 3 18 3 3 18 3 3 3 3 3 3 3 3 3 3 3	clayey silt, t and grav							3	18			- - - - - 1.5							
alston associates inc.	DRILLING DATE: 19 Dec. 2013			GED B	LOG					since	on associates	alst								
Consulting engineers REVIEWED BY: VN Page 1 of 1						ŀ														

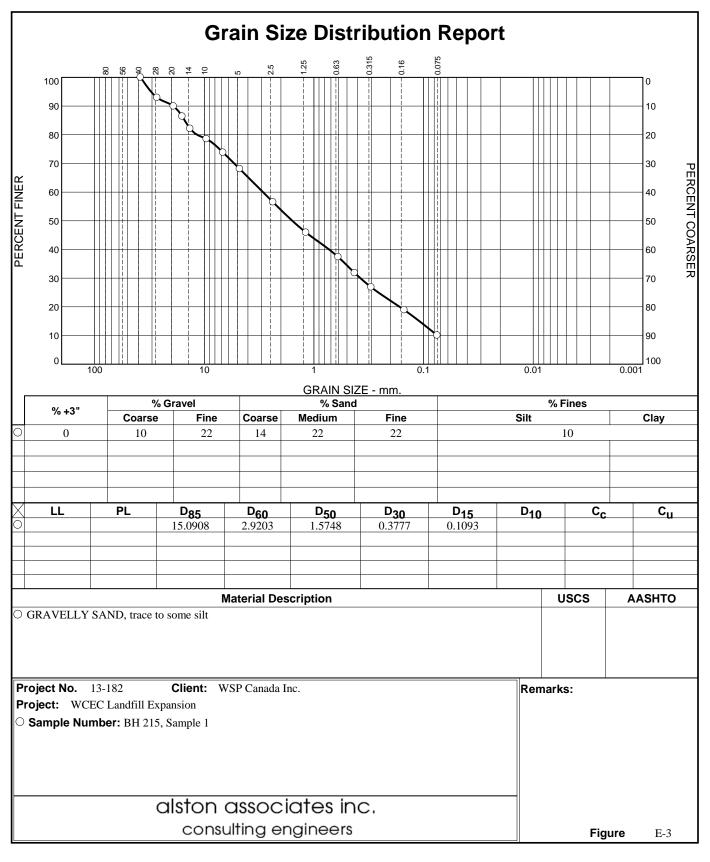
LOCATION CORPUS DATIVE CORPUS DESTING DESTING		NT: WSP Canada						_				poon Sampling EV. (m) 98.35	BH No.:	2	16	;	
SAMPLE TYPE AUGER DRIVEN CORING DVMANC CONE SHELEY SPUT SPON 8 8											-						
INSTRUMENTATION REMARKS 99-40 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0				VEN	<u> </u>				1277	_	-			$\overline{\mathbb{T}}$		ITS	
0 Benehale dry and gen mo complexition. 200 mm frost penetration 1 1 96 1 100 mm frost penetration 1 1 1 97 1.5 10 1 1 1 1 1.5 1 1 1 1 1 1.5 1 1 1 1 1 1.5 1 1 1 1 1 1.5 1 1 1 1 1 1.5 1 1 1 1 1 1.5 1 1 1 1 1 1.5 1 1 1 1 1 1.5 1 1 1 1 1 1.5 1 1 1 1 1 1.5 1 1 1 1 1 1.6 1 1 1 1 1 1.6 1 1 1 1 1 1.6 1 1 1 1 1 1.6 1 1 1 1 1 1.6 1 1 1 1 1 1.6 1 1 </td <td>- OAIVII</td> <td></td> <td></td> <td>Shea</td> <td>ar Stren</td> <td></td> <td>T</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td>	- OAIVII			Shea	ar Stren		T							<u> </u>			
0 Borehole dry and open un compution. 200 mm thed panetration 1 1 98 0.5 panetration 1 1 98 1 sand and gravel. Fill. 2 97 1.5 1 1 98 1.5 1 1 97 1.5 1 1 1 97 1.5 1 1 1 1 1 1.5 1 1 1 1 1 1 1.5 1	DEPTH (m)		REMARKS	40 8 N (Blov	30 120 I-Value vs/300n	nm)					SOIL SYMBOL			SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m
1 16 Silv Sandi trace gravel Fill 17.5 16 Very stift, molet, dark brown dravey stift, molet, dark brown draves organics, Fill 1 3 18 15 16 END OF BOREHOLE 1 3 18	-		on completion. 200 mm frost												1		98 -
1.5 Clayey sit, race gravel 3 16 1.5 Image: site of gravity 1 3 16 Image: site of gravity Image: site of gravity 1 3 16 Image: site of gravity Image: site of gravity Image: site of gravity 1 3 16 Image: site of gravity Image: site of gravity Image: site of gravity 1 1 1 16 Image: site of gravity Image: site of gravity Image: site of gravity 1 1 16 16 Image: site of gravity Image: site of gravity 1 16 16 17 16 17 Image: site of gravity Image: site of gravity 16 16 16 16 16 17 16 16 16 17 16	- - - 1											silty sand, t Fl	race gravel LL		2		97.5 -
alston associates inc.	- - - 1.5			16 ▲								clayey silt, trace orga	trace gravel inics, FILL		3	16	97 -
		alst	on associates	inc.					OGG	ED B	r: K0			19		. 20	13
	1												Page 1 of 1	. 5			-

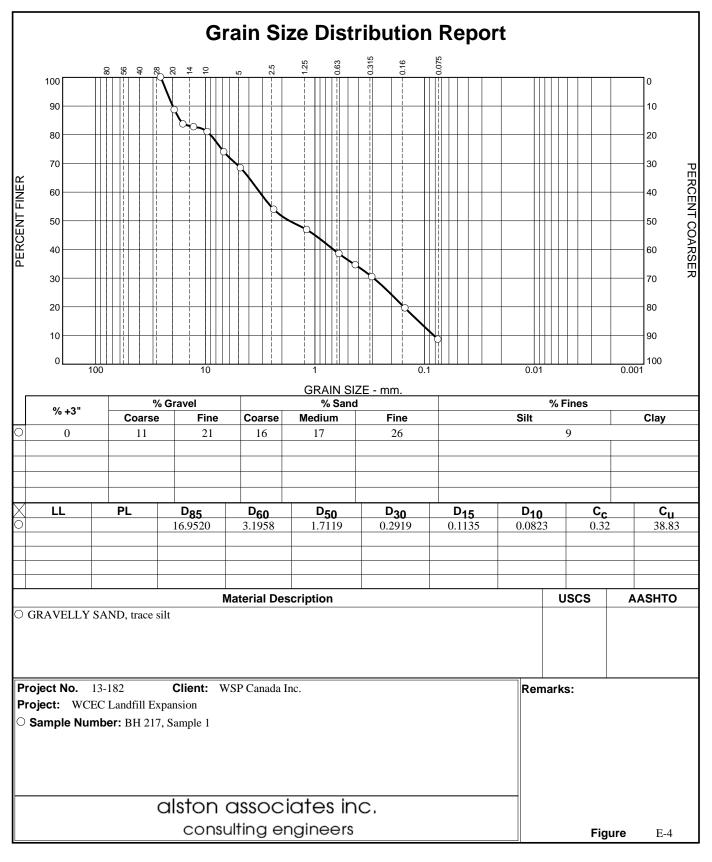

	T: WSP Canada								and : VN	-		ooon Sampling EV. (m) 98.49	BH No.:	2	17	,	
	TION: Carp, ON			 		ING:							PROJECT NO.: 13				
		AUGER DRI	VEN				RING					STING: 423638	HELBY	<u> </u>		IT C	POON
SAIVIFL			Shea	ar Stre			TING	,						<u> _</u>			
DEPTH (m)	NSTRUMENTATION DATA	REMARKS	40 8 N (Blov	(kPa) 30 120 V-Value vs/300 40 60	ə mm)			W.C	. LL 0 80		SOIL SYMBOL	SC DESCR		SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
0		Borehole dry and open on completion. 200 mm frost penetration		50/100		5						gravelly trace FIL	e silt		1		- 98
- - 												very d gravel and roo with some cla	ck fragments		2	50/ 100	97.5 -
- 1.5			▲ 8							2		loose, da sand, trac FIL	ce gravel L		3	8	97 -
		on associates							GED			END OF BOREHO	DLE				
		onsulting enginee							EWE				Page 1 of 1				

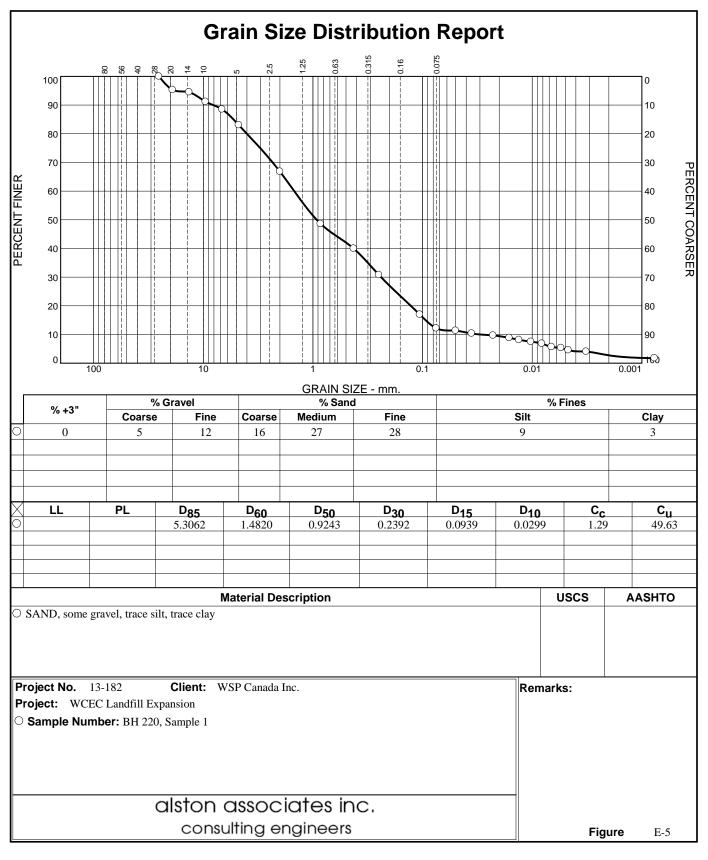
	NT: WSP Canada			ME	THOD): Al	lger	ing a	nd S	plit S	poon Sampling					
PRO.	IECT: WCEC Lan	dfill Expansion		PR	DJEC.	T EN	GIN	ER:	VN	EL	EV. (m) 99.03	BH No.:	2	18	5	
LOCA	TION: Carp, ON							4283		EA	STING: 423681	PROJECT NO.: 1	3-18	32		
SAM		AUGER DRI	VEN			COR	ING			DYN/	MIC CONE	SHELBY		SPI	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 1 (Bloy	ar Strei (kPa) 80 120 N-Value ws/300i 40 60) 160 mm)			W.C. 0 60		SOIL SYMBOL		DIL RIPTION	SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
- 0 - - - 0.5		Borehole dry and open on completion. 200 mm frost penetration		50/75							grave	l and I, FILL		1	50/	99 - 98.5 -
- - 											fine sand t trace to som	damp, brown o sandy silt e gravel, FILL		2	75	98 -
- 			1 4								clayey silt, F	vist, grey trace gravel LL		3	14	97.5 -
	alst	on associates							ED B		END OF BOREH	OLE DRILLING DATE				12
1															. 20	.0
	C	onsulting enginee	rs				IR	EVIE	WED	BY:	VN	Page 1 of 1				


	NT: WSP Canada			ME	THO	D: A	uge	ring	and	Sp	lit S	poon Sampling					
PRO.	JECT: WCEC Lan	dfill Expansion		PR	OJE		NGIN	IEER	: VI	N	EL	EV. (m) 98.91	BH No.:	2	19)	
LOCA	TION: Carp, ON			NO		ING:	501	415	2	-	EA	STING: 423724	PROJECT NO.: 1	3-18	32		
SAM		AUGER DRI	VEN			CO	RING	;		C	YNA		SHELBY		SPI	IT S	POON
DEPTH (m)	INSTRUMENTATION DATA	REMARKS	40 (Bloy	ar Stre (kPa) 80 12 N-Valu ws/300 40 60	0 160 e 0mm)				. LL 0 80		SOIL SYMBOL		DIL RIPTION	SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
- 0 - - - 0.5		Borehole dry and open on completion. 200 mm frost penetration		50/75		3							l and I, FILL		1		98.5 -
- - - - -				$\left \right $								gravelly	damp, brown silty sand ay, FILL			50/ 75	98 -
- - 1.5 -			24									SILTY trace sand	moist, grey CLAY and gravel		3	24	97.5 -
	alsta	on associates	inc.						GED	BY	: K (END OF BOREH	OLE DRILLING DATE	: 19		. 20	13
1														. 13		20	.0
1	C	onsulting enginee	rs					κevi	EWE	:D E	3Y: '	VN	Page 1 of 1				

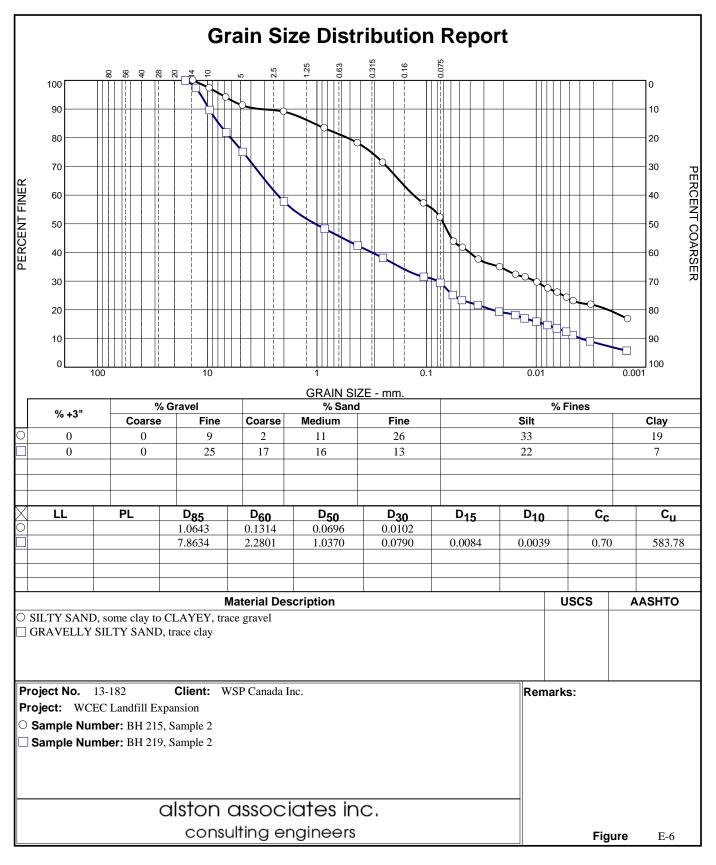
PROJECT: WEEK Landtill Ergansion PROJECT EVINEER: VM LEUX, (n) 99.04 BH No. 2200 LOCATION: Capp. ON NOTTING: 5014122 EASTRIG: 423770 PROJECT NO. 13-182 AUGEN ALLEY SOLUTION: CORE SOLUTION: CARE ALLEY SOLUTION: CARE AL		NT: WSP Canada			ME	THC)D: /	Auge	ering	and	l Sp	lit S	poon Sampling		~	~		
SAMPLE TYPE AUGER DRVEN CORING DVNAMIC CONE SHELEY SPUT SPOON Image: Instrumentation Data Image:			dfill Expansion								N	EL	EV. (m) 99.04)	
BISTRUMENTATION REMARKING Solution Solution SOLUTION Bistricture (Second) Bistricture (Second) -0.00 (20 (20 (20 (20 (20 (20 (20 (20 (20 (LOCA				NC					22					3-18			
BISTURDENTATION RESERVEG Image: server erver server server server serververver server server	SAMF		AUGER DRI		or Chro		CC	RIN	G			DYNA		SHELBY	Ш.	SPI	LIT S	POON
0 Borehale dry and gen on completion. 200 mm frost penetration 0 sand, some gravel trace bill and day Fill. 1 90 -0.5 200 mm frost penetration 60145 1 1 1 2 507 -1 500 mm frost penetration 60145 60145 1 1 2 507 -1.5 4.15 60145 6 1 1 2 507 -1.5 4.15 6 1 1 1 2 507 -1.5 4.15 1 1 1 1 3 15 97.5 -1.5 4.15 1 1 1 1 1 3 15 97.5 -1.5 4.15 1 <td>DEPTH (m)</td> <td></td> <td>REMARKS</td> <td>40 (Blov</td> <td>(kPa) 80 12 N-Valu ws/300</td> <td>e 20 160 e 20mm)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>SOIL SYMBOL</td> <td></td> <td></td> <td>SAMPLE TYPE</td> <td>SAMPLE NO.</td> <td>SPT(N)</td> <td>ELEVATION (m)</td>	DEPTH (m)		REMARKS	40 (Blov	(kPa) 80 12 N-Valu ws/300	e 20 160 e 20mm)						SOIL SYMBOL			SAMPLE TYPE	SAMPLE NO.	SPT(N)	ELEVATION (m)
1 415 Image: Second Se	- 0 - -		on completion. 200 mm frost						40		0		trace silt	and clay				99 .
-1.5 415 Image: state of the state	- - - - - 1 -												fine sand to	o sandy silt		2	50/ 125	-
alston associates inc.	- - - - -			▲ 15									clayey silt, Fl	trace gravel LL		3	15	97.5 -
		alst		inc														12
								┢						Page 1 of 1		200	0	


APPENDIX E LABORATORY TEST RESULTS

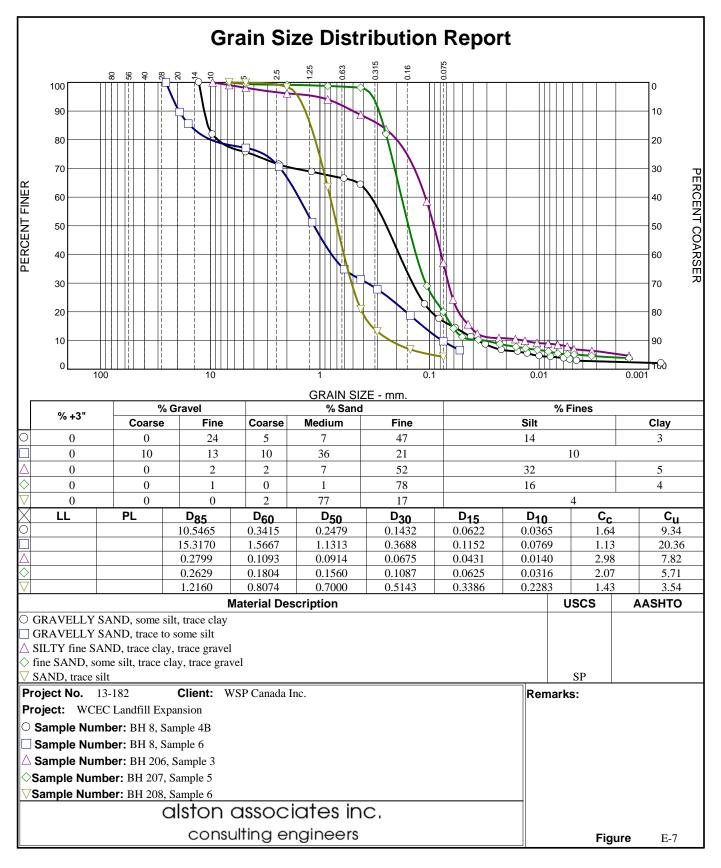

Tested By: GL

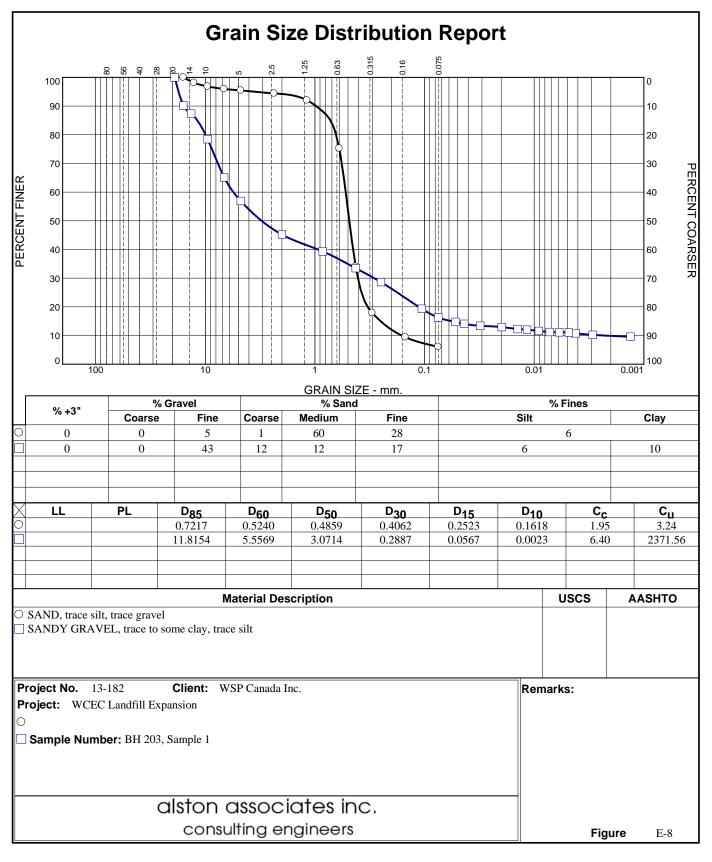


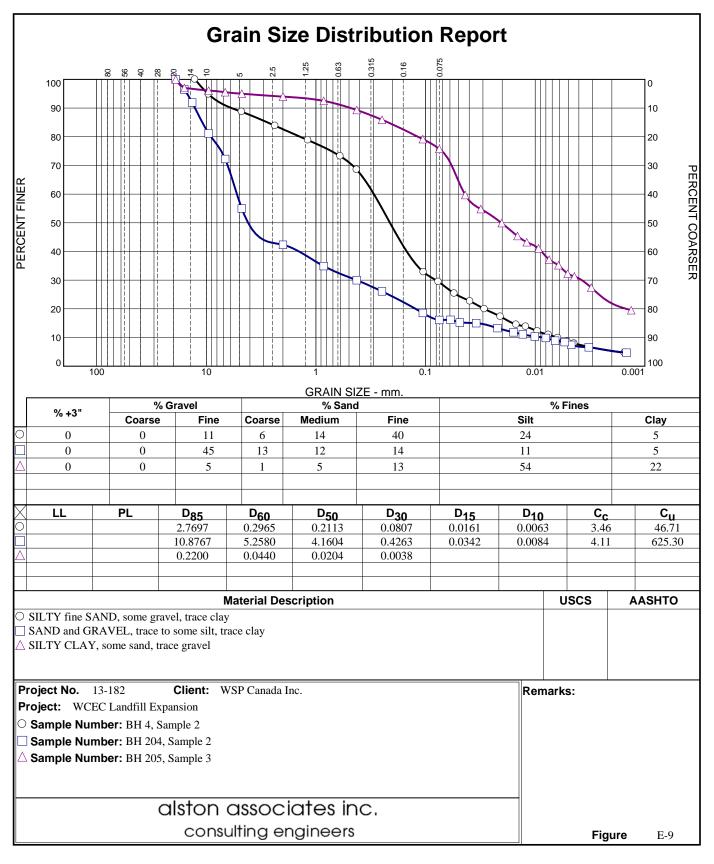
Tested By: GL

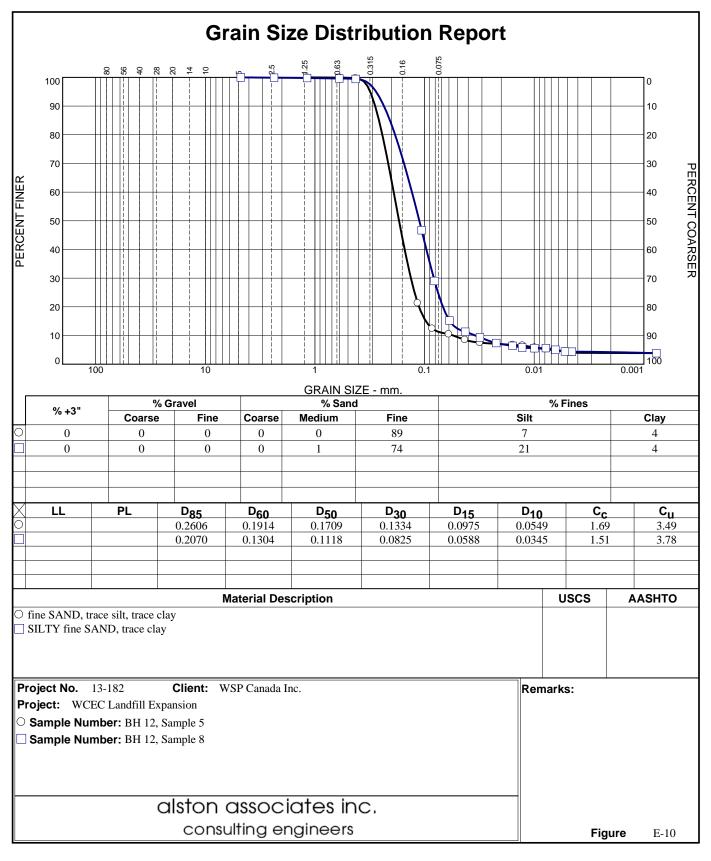


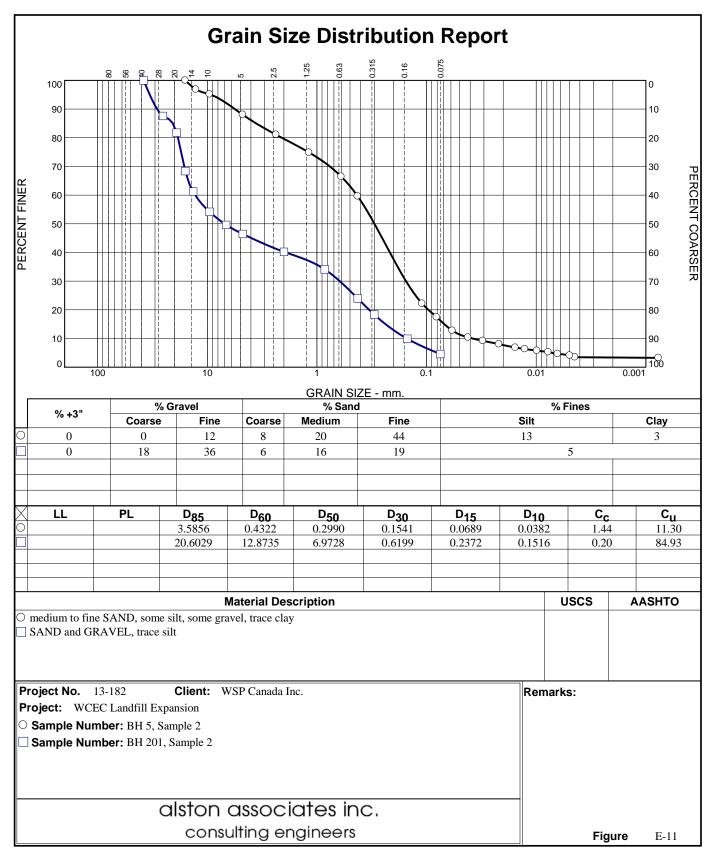
Tested By: GL



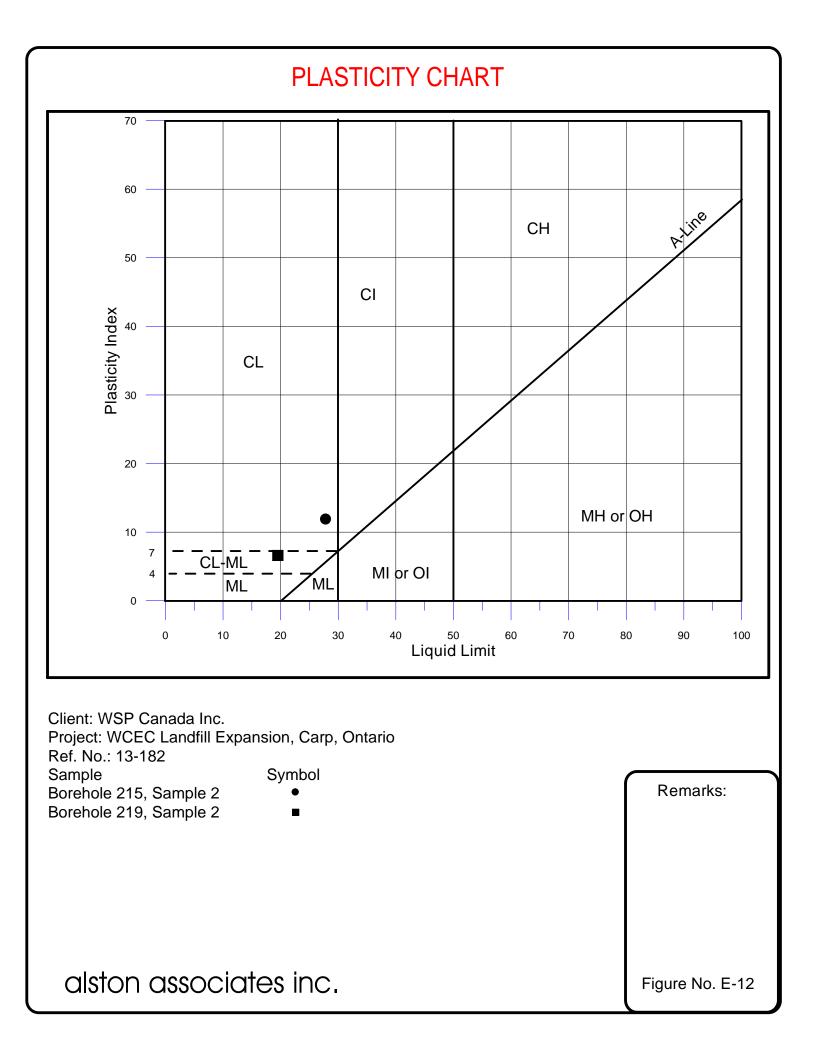

Tested By: TS/RH


Tested By: <u>○ GL/RH</u> □ TS/NW


Tested By: <u>○ MA/TA □ MA △ GL/RH ◇ GL/NW ⊽ GL</u> Checked By: <u>JB</u>


Tested By: <u>GL/NW</u>

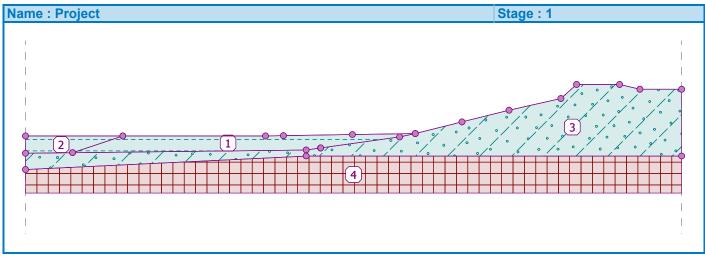
Tested By: ○ MA/AM □ GL/RH △ TS Checked By: JB



Tested By: <u>O TS/TA</u> MA/TA

Tested By: <u>OMA/TA</u>GL

_____ Checked By: JB


APPENDIX F SLOPE STABILITY ANALYSES

Slope stability analysis

Input data

Project

Task :13-182 Carp LandfillDescription :Cross Section - Infiltration Basin 1 (empty) and Stormwater Pond 1 (full)Author :KCDate :2014-01-27

Settings

Standard - safety factors **Stability analysis**

Verification methodology : Safety factors (ASD)

Safety factors					
Permanent design situation					
Safety factor : SF _s = 1.50 [-]					

Interface

No.	Interface location		Coordi	nates of inte	rface poin	ts [m]	
NO.	. Interface location		z	x	z	x	z
		0.00	122.00	20.82	122.00	51.33	122.00
		55.14	122.06	69.89	122.29	83.35	122.50
1		93.33	125.00	103.40	127.50	114.47	130.00
		117.83	133.00	127.02	133.00	131.37	132.00
		140.31	132.00				
		0.00	118.30	10.07	118.42	60.00	119.00
2		63.09	119.43	63.14	119.44	80.00	121.80
		83.35	122.50				
		10.07	118.42	20.82	122.00		
3							

		13-182 Carp Landfill
KC		

No.	Interface location		Coordi	nates of inte	rface poin	ts [m]	
NO.	interface location	x	z	x	z	x	z
		0.00	114.80	60.00	117.70	140.31	117.70
4							

Soil parameters - effective stress state

No.	Name	Pattern	Φef [°]	c _{ef} [kPa]	γ [kN/m ³]
1	Fill		26.00	0.00	20.00
2	Compact to Very Dense Sand to Silty Sand		36.00	0.00	22.00
3	Proposed Fill for Ponds		32.00	0.00	19.00
4	Proposed Uncompacted Fill for Ponds		27.00	0.00	18.00

Soil parameters - uplift

No.	Name	Pattern	γsat [kN/m³]	γ _s [kN/m³]	n [-]
1	Fill		20.00		
2	Compact to Very Dense Sand to Silty Sand		22.00		
3	Proposed Fill for Ponds		19.00		
4	Proposed Uncompacted Fill for Ponds		18.00		

Soil parameters

Fill	
Unit weight :	γ = 20.00 kN/m ³
Stress-state :	effective
Angle of internal friction :	_{φef} = 26.00 °
Cohesion of soil :	c _{ef} = 0.00 kPa
Saturated unit weight :	γ_{sat} = 20.00 kN/m ³

[GEO5 - Slope Stability | version 5.17.12.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2014 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com| http://www.gtscad.com]

KC

Compact to Very Dense Sand to Silty Sand

Unit weight :	$\gamma = 22.00 \text{ kN/m}^3$
Stress-state :	effective
Angle of internal friction :	φ_{ef} = 36.00 °
Cohesion of soil :	c _{ef} = 0.00 kPa
Saturated unit weight :	γ_{sat} = 22.00 kN/m ³

Proposed Fill for Ponds

Unit weight :	γ = 19.00 kN/m ³
Stress-state :	effective
Angle of internal friction :	$\varphi_{\rm ef}$ = 32.00 °
Cohesion of soil :	c _{ef} = 0.00 kPa
Saturated unit weight :	$\gamma_{sat} = 19.00 \text{ kN/m}^3$

Proposed Uncompacted Fill for Ponds

Unit weight :	γ =	18.00 kN/m ³
Stress-state :	effectiv	-
Angle of internal friction :	φ_{ef} =	27.00 °
Cohesion of soil :	c _{ef} =	0.00 kPa
Saturated unit weight :	γ _{sat} =	18.00 kN/m ³

Rigid bodies

No.	Name	Sample	γ [kN/m ³]
1	Probable Bedrock		24.00

Assigning and surfaces

No.	Surface position	Coordii	nates of s	urface points	[m]	Assigned
NO.	ourrace position	x	z	x	z	soil
		10.07	118.42	60.00	119.00	Fill
		63.09	119.43	63.14	119.44	FIII
1		80.00	121.80	83.35	122.50	
		69.89	122.29	55.14	122.06	
		51.33	122.00	20.82	122.00	
		20.82	122.00	0.00	122.00	Fill
		0.00	118.30	10.07	118.42	1 111
2						

No.	Surface position	Coordii	nates of su	urface points	[m]	Assigned
NO.	Surface position	x	z	x	z	soil
		60.00	117.70	140.31	117.70	
		140.31	132.00	131.37	132.00	Sand to Silty Sand
		127.02	133.00	117.83	133.00	
		114.47	130.00	103.40	127.50	
3		93.33 125.00 83.35 122.50				
		80.00	121.80	63.14	119.44	
		63.09	119.43	60.00	119.00	
		10.07	118.42	0.00	118.30	
		0.00	114.80			
		60.00	117.70	0.00	114.80	Probable Bedrock
		0.00	109.80	140.31	109.80	Probable Bedrock
4		140.31	117.70			

Water

Water type : GWT

	No.	GWT location	Coordinates of GWT points [m]					
			x	z	x	z	x	z
	Ground water table not specified.							

Tensile crack

Tensile crack not inputted.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation : permanent

Input data (Stage of construction 2)

Embankment interface

No.	Interface location	Coordinates of interface points [m]						
NO.	interface location	x	z	x	z	x	z	
	0.00	123.00	23.81	123.00	35.18	126.75		
1		38.05	126.75	49.11	124.00	75.20	124.00	
		89.03	127.50	100.00	127.50	103.40	127.50	
		20.82	122.00	23.81	123.00			
2	2							

Assigning and surfaces

No.	Surface position	Coordii	nates of su	rface points	[m]	Assigned	
NO.	Surface position	x	z	x	z	soil	
		20.82	122.00	51.33	122.00	Proposed Fill for Ponds	
		55.14	122.06	69.89	122.29	Froposed Fill for Forlds	
		83.35	122.50	93.33	125.00		
1		103.40	127.50	100.00	127.50		
		89.03	127.50	75.20	124.00		
		49.11	124.00	38.05	126.75		
		35.18	126.75	23.81	123.00		
		23.81	123.00	0.00	123.00	Proposed Uncompacted Fill	
		0.00	122.00	20.82	122.00	for Ponds	
2							
		10.07	118.42	60.00	119.00	Proposed Fill for Dende	
		63.09	119.43	63.14	119.44	Proposed Fill for Ponds	
3		80.00	121.80	83.35	122.50	1//////////////////////////////////////	
		69.89	122.29	55.14	122.06		
		51.33	122.00	20.82	122.00		
		20.82	122.00	0.00	122.00	Proposed Uncompacted Fill	
		0.00	118.30	10.07	118.42	for Ponds	
4							
		60.00	117.70	140.31	117.70		
		140.31	132.00	131.37		Sand to Silty Sand	
		127.02	133.00	117.83	133.00		
		114.47	130.00	103.40	127.50		
5		93.33	125.00	83.35	122.50	· / · / · · / ·	
		80.00	121.80	63.14	119.44		
		63.09	119.43	60.00	119.00	o o d o j o o o	
		10.07	118.42	0.00	118.30		
		0.00	114.80				
		60.00	117.70	0.00	114.80	Probable Bedrock	
		0.00	109.80	140.31	109.80		
6		140.31	117.70				

KC

Water

Water type : GWT

No.	GWT location	Coordinates of GWT points [m]					
NO.	GWT location	x	z	x	z	x	z
		0.00	123.30	0.72	123.30	25.54	123.30
1		36.64	123.30	39.88	126.15	103.20	126.15
		140.31	126.15				

Tensile crack

Tensile crack not inputted.

Earthquake

Earthquake not included.

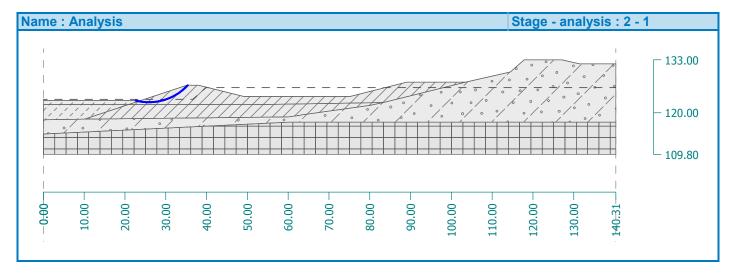
Settings of the stage of construction

Design situation : permanent

Results (Stage of construction 2)

Analysis 1 (stage 2)

Circular slip surface

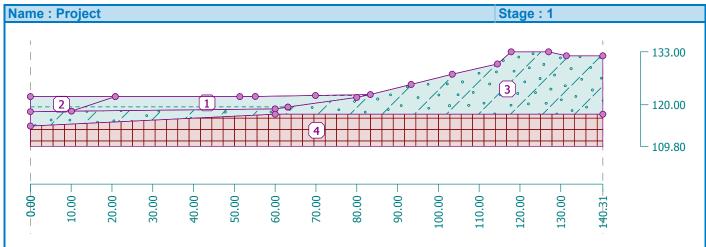

	Slip surface parameters								
Center :	x =	25.84	[m]	Angles :	α ₁ =	-14.38 [°]			
	z =	135.67	[m]		α ₂ =	47.00 [°]			
Radius :	R =	13.08	[m]						
The slip surface after optimization.									

Segments restricting slip surface

No.	First point		Second point			
NO.	x [m]	z [m]	x [m]	z [m]		
1	23.49	123.09	23.96	122.93		
2	23.72	122.89	35.35	126.70		
3	35.20	126.54	35.23	126.87		

Slope stability verification (Bishop) Sum of active forces : $F_a = 77.98 \text{ kN/m}$

KC



Slope stability analysis

Input data

Project

Task :13-182 Carp LandfillDescription :Cross Section - Infiltration Basin 1 (full) and Stormwater Pond 1 (empty)Author :KCDate :2014-01-27

Settings

Standard - safety factors **Stability analysis**

Verification methodology : Safety factors (ASD)

Safety factors						
	Permanent design situation					
Safety factor : SF _s = 1.50 [-]						

Interface

No.	Interface location		Coordi	nates of inte	rface poin	ts [m]	
NO.		x	z	x	z	x	z
		0.00	122.00	20.82	122.00	51.33	122.00
		55.14	122.06	69.89	122.29	83.35	122.50
1		93.33	125.00	103.40	127.50	114.47	130.00
		117.83	133.00	127.02	133.00	131.37	132.00
		140.31	132.00				
		0.00	118.30	10.07	118.42	60.00	119.00
2		63.09	119.43	63.14	119.44	80.00	121.80
		83.35	122.50				
		10.07	118.42	20.82	122.00		
3							

1

		13-182 Carp Landfill
KC		

No.	Interface location	Coordinates of interface points [m]						
NO.		x	z	x	z	x	z	
		0.00	114.80	60.00	117.70	140.31	117.70	
4								

Soil parameters - effective stress state

No.	Name	Pattern	Φef [°]	c _{ef} [kPa]	γ [kN/m ³]
1	Fill		26.00	0.00	20.00
2	Compact to Very Dense Sand to Silty Sand		36.00	0.00	22.00
3	Proposed Fill for Ponds		32.00	0.00	19.00
4	Proposed Uncompacted Fill for Ponds		27.00	0.00	18.00

Soil parameters - uplift

No.	Name	Pattern	γsat [kN/m³]	γ _s [kN/m³]	n [-]
1	Fill		20.00		
2	Compact to Very Dense Sand to Silty Sand		22.00		
3	Proposed Fill for Ponds		19.00		
4	Proposed Uncompacted Fill for Ponds		18.00		

Soil parameters

Fill	
Unit weight :	γ = 20.00 kN/m ³
Stress-state :	effective
Angle of internal friction :	_{φef} = 26.00 °
Cohesion of soil :	c _{ef} = 0.00 kPa
Saturated unit weight :	γ_{sat} = 20.00 kN/m ³

[GEO5 - Slope Stability | version 5.17.12.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2014 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | | sales@gtscad.com| http://www.gtscad.com]

KC

Compact to Very Dense Sand to Silty Sand

Unit weight :	$\gamma = 22.00 \text{ kN/m}^3$
Stress-state :	effective
Angle of internal friction :	φ_{ef} = 36.00 °
Cohesion of soil :	c _{ef} = 0.00 kPa
Saturated unit weight :	γ_{sat} = 22.00 kN/m ³

Proposed Fill for Ponds

Unit weight :	γ = 19.00 kN/m ³
Stress-state :	effective
Angle of internal friction :	$\varphi_{\rm ef}$ = 32.00 °
Cohesion of soil :	c _{ef} = 0.00 kPa
Saturated unit weight :	$\gamma_{sat} = 19.00 \text{ kN/m}^3$

Proposed Uncompacted Fill for Ponds

Unit weight :	γ =	18.00 kN/m ³
Stress-state :	effectiv	-
Angle of internal friction :	φ_{ef} =	27.00 °
Cohesion of soil :	c _{ef} =	0.00 kPa
Saturated unit weight :	γ _{sat} =	18.00 kN/m ³

Rigid bodies

No.	Name	Sample	γ [kN/m ³]
1	Probable Bedrock		24.00

Assigning and surfaces

No.	Surface position	Coordii	nates of s	urface points	[m]	Assigned
NO.	Surface position	x	z	x	z	soil
		10.07	118.42	60.00	119.00	Fill
		63.09	119.43	63.14	119.44	FIII
1		80.00	121.80	83.35	122.50	
		69.89	122.29	55.14	122.06	
		51.33	122.00	20.82	122.00	
		20.82	122.00	0.00	122.00	Fill
		0.00	118.30	10.07	118.42	1 111
2						

No.	Surface position	Coordii	nates of su	Assigned		
NO.	Surface position	x	z	x	z	soil
		60.00	117.70	140.31	117.70	
		140.31	132.00	131.37	132.00	Sand to Silty Sand
		127.02	133.00	117.83	133.00	
		114.47	130.00	103.40	127.50	
3		93.33	125.00	83.35	122.50	
		80.00	121.80	63.14	119.44	
		63.09	119.43	60.00	119.00	
		10.07	118.42	0.00	118.30	
		0.00	114.80			
		60.00	117.70	0.00	114.80	Probable Bedrock
		0.00	109.80	140.31	109.80	Probable Bedrock
4		140.31	117.70			

Water

Water type : GWT

		GWT location	Coordinates of GWT points [m]						
NO.	GWT location	x	z	x	z	x	z		
	Ground water table not specified.								

Tensile crack

Tensile crack not inputted.

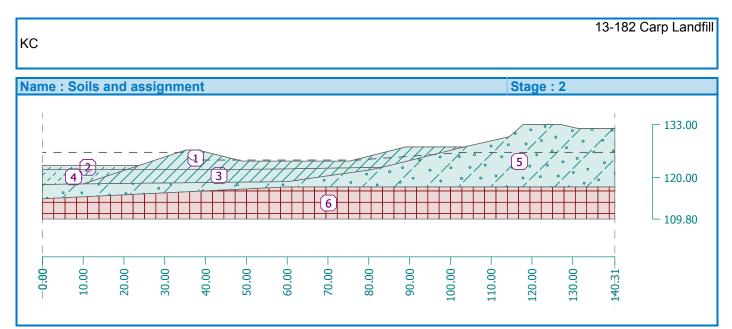
Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation : permanent

Input data (Stage of construction 2)


Embankment interface

No.	Interface location	Coordinates of interface points [m]						
NO.	Interface location	x	z	x	z	x	z	
		0.00	123.00	23.81	123.00	35.18	126.75	
1		38.05	126.75	49.11	124.00	75.20	124.00	
		89.03	127.50	100.00	127.50	103.40	127.50	
	2	20.82	122.00	23.81	123.00			
2								

Assigning and surfaces

No.	Surface position	Coordii	nates of su	rface points	[m]	Assigned
NO.	Surface position	x	z	x	z	soil
		20.82	122.00	51.33	122.00	Proposed Fill for Ponds
		55.14	122.06	69.89	122.29	Froposed Fill for Forlds
		83.35	122.50	93.33	125.00	
1		103.40	127.50	100.00	127.50	
		89.03	127.50	75.20	124.00	
		49.11	124.00	38.05	126.75	
		35.18	126.75	23.81	123.00	
		23.81	123.00	0.00	123.00	Proposed Uncompacted Fill
		0.00	122.00	20.82	122.00	for Ponds
2						
		10.07	118.42	60.00	119.00	Proposed Fill for Dende
		63.09	119.43	63.14	119.44	Proposed Fill for Ponds
3		80.00	121.80	83.35	122.50	1//////////////////////////////////////
		69.89	122.29	55.14	122.06	
		51.33	122.00	20.82	122.00	
		20.82	122.00	0.00	122.00	Proposed Uncompacted Fill
		0.00	118.30	10.07	118.42	for Ponds
4						
		60.00	117.70	140.31	117.70	
		140.31	132.00	131.37		Sand to Silty Sand
		127.02	133.00	117.83	133.00	
		114.47	130.00	103.40	127.50	
5		93.33	125.00	83.35	122.50	· / · / · · / ·
		80.00	121.80	63.14	119.44	
		63.09	119.43	60.00	119.00	o o d o j o o o
		10.07	118.42	0.00	118.30	
		0.00	114.80			
		60.00	117.70	0.00	114.80	Probable Bedrock
		0.00	109.80	140.31	109.80	
6		140.31	117.70			

KC

Water

Water type : GWT

No.	GWT location	Coordinates of GWT points [m]							
With ocation	GWT location	x	z	x	z	x	z		
		0.00	126.15	34.26	126.15	36.65	124.30		
1		46.74	124.30	77.61	124.30	103.20	126.15		
		140.31	126.15						

Tensile crack

Tensile crack not inputted.

Earthquake

Earthquake not included.

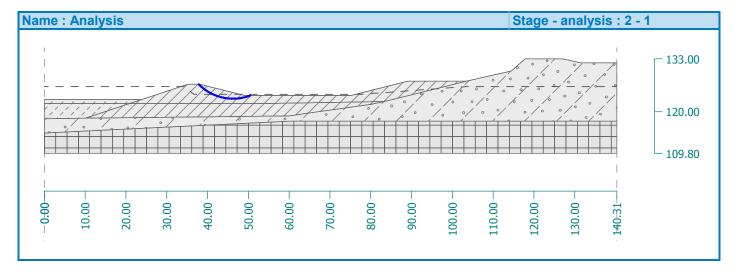
Settings of the stage of construction

Design situation : permanent

Results (Stage of construction 2)

Analysis 1 (stage 2)

Circular slip surface

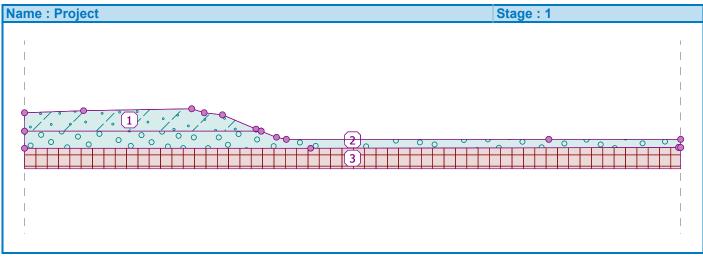

Slip surface parameters						
Center :	x =	46.23	[m]	Angles :	α ₁ =	-45.72 [°]
Center.	z =	134.94	[m]		α ₂ =	21.15 [°]
Radius : R = 11.73 [m]						
	The slip surface after optimization.					

Segments restricting slip surface

No.	First point		Second point		
NO.	x [m]	z [m]	x [m]	z [m]	
1	37.79	126.88	38.29	126.53	
2	37.97	126.63	49.26	123.88	
3	49.03	123.84	49.35	124.15	

Slope stability verification (Bishop) Sum of active forces : $F_a = 60.63 \text{ kN/m}$

KC


1

Slope stability analysis

Input data

Project

Task :13-182 Carp LandfillDescription :Cross Section - Infiltration Basin 2 (empty) and Stormwater Pond 3 (full)Author :KCDate :2014-01-27

Settings

Standard - safety factors **Stability analysis**

Verification methodology : Safety factors (ASD)

Safety factors					
Permanent design situation					
Safety factor : SF _s = 1.50 [-]					

Interface

No.	Interface location	Coordinates of interface points [m]					
NO.		x	z	x	z	x	z
		0.00	124.00	14.43	124.50	40.91	125.00
		43.97	124.00	48.42	123.50	56.62	120.00
1		57.88	119.50	61.66	118.00	64.03	117.50
		128.26	117.50	160.50	117.50		
•		0.00	119.50	57.88	119.50		
2							
2		0.00	115.30	70.00	115.30	160.00	115.50
3		160.50	115.50				

Soil parameters - effective stress state

No.	Name	Pattern	Φef [°]	c _{ef} [kPa]	γ [kN/m ³]
1	Compact to Very Dense Silty Fine Sand		36.00	0.00	22.00
2	Very Dense Sand and Rock Fragments		38.00	0.00	23.00
3	Proposed Fill for Ponds		32.00	0.00	19.00
4	Proposed Uncompacted Fill for Ponds		27.00	0.00	18.00

Soil parameters - uplift

No.	Name	Pattern	γsat [kN/m ³]	γs [kN/m ³]	n [-]
1	Compact to Very Dense Silty Fine Sand		22.00		
2	Very Dense Sand and Rock Fragments		23.00		
3	Proposed Fill for Ponds		19.00		
4	Proposed Uncompacted Fill for Ponds		18.00		

Soil parameters

Compact to Very Dense Silty Fine Sand

Unit weight :	γ =	22.00 kN/m ³
Stress-state :	effectiv	/e
Angle of internal friction :	φ_{ef} =	36.00 °
Cohesion of soil :	c _{ef} =	0.00 kPa
Saturated unit weight :	γ _{sat} =	22.00 kN/m ³

Unit weight :	γ = 23.00 kN/m ³
Stress-state :	effective
Angle of internal friction :	φ_{ef} = 38.00 °
Cohesion of soil :	c _{ef} = 0.00 kPa
Saturated unit weight :	γ_{sat} = 23.00 kN/m ³

Proposed Fill for Ponds

Unit weight :	γ = 19.00 kN/m ³
Stress-state :	effective
Angle of internal friction :	φ_{ef} = 32.00 °
Cohesion of soil :	c _{ef} = 0.00 kPa
Saturated unit weight :	γ_{sat} = 19.00 kN/m ³

Proposed Uncompacted Fill for Ponds

Unit weight :	γ =	18.00 kN/m ³
Stress-state :	effectiv	e
Angle of internal friction :	φ_{ef} =	27.00 °
Cohesion of soil :	c _{ef} =	0.00 kPa
Saturated unit weight :	γ _{sat} =	18.00 kN/m ³

Rigid bodies

No.	Name	Sample	γ [kN/m ³]
1	Probable Bedrock		24.00

Assigning and surfaces

No.	Surface position	Coordi	nates of su	urface points	[m]	Assigned		
NO.	Surface position	x	z	x	z	soil		
		57.88	119.50	56.62	120.00	Compact to Very Dense		
		48.42	123.50	43.97	124.00	Silty Fine Sand		
1		40.91	125.00	14.43	124.50	· · · · · · · · · · ·		
		0.00	124.00	0.00	119.50			
		70.00	115.30	160.00	115.50	Very Dense Sand and Rock		
		160.50	115.50	160.50	117.50	Fragments		
2		128.26	117.50	64.03	117.50	0 0 0 0 0 0		
		61.66	118.00	57.88	119.50	$\sim \sim $		
		0.00	119.50	0.00	115.30			
		160.00	115.50	70.00	115.30	Probable Bedrock		
		0.00	115.30	0.00	110.30	Probable Deurock		
3		160.50	110.30	160.50	115.50			
	••							

Water

Water type : GWT

No	No. GWT location	GWT location		Cool	dinates of (GWT points	s [m]	
		GWT location		z	x	Z	x	z
	Ground water table not specified.							

Tensile crack

KC

Tensile crack not inputted.

Earthquake

Earthquake not included.

Settings of the stage of construction

Design situation : permanent

Input data (Stage of construction 2)

Embankment interface

No.	Interface location	Coordinates of interface points [m]						
NO.	interface location	x	z	x	z	x	z	
		48.42	123.50	53.06	126.30	56.12	126.30	
		70.25	122.80	70.38	122.80	102.27	122.80	
1		118.18	126.30	121.14	126.30	134.18	122.00	
		160.50	122.00					
•		134.18	122.00	147.68	117.50			
2								

Assigning and surfaces

No.	Surface position	Coordi	nates of su	urface points	[m]	Assigned	
NO.	Surface position	x	z	x	z	soil	
		57.88	119.50	56.62	120.00		
		48.42	123.50	43.97	124.00	Silty Fine Sand	
1		40.91	125.00	14.43	124.50	• • • • • • • • • • •	
		0.00	124.00	0.00	119.50		
		134.18	122.00	121.14	126.30	Proposed Fill for Ponds	
		118.18	126.30	102.27	122.80	Proposed Fill for Portus	
		70.38	122.80	70.25	122.80		
0		56.12	126.30	53.06	126.30		
2		48.42	123.50	56.62	120.00		
		57.88	119.50	61.66	118.00		
		64.03	117.50	86.22	117.50		
		128.26	117.50	147.68	117.50		
		147.68	117.50	160.50	117.50	Proposed Uncompacted Fill	
		160.50	122.00	134.18	122.00	for Ponds	
3							
		70.00	115.30	160.00	115.50	Very Dense Sand and Rock	
		160.50	115.50	160.50	117.50	Fragments	
		147.68	117.50	128.26	117.50		
4		86.22	117.50	64.03	117.50		
		61.66	118.00	57.88	119.50		
		0.00	119.50	0.00	115.30	, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	

[GEO5 - Slope Stability | version 5.17.12.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2014 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | sales@gtscad.com| http://www.gtscad.com]

13-182 Carp Landfill

Coordinates of surface points [m] Assigned No. **Surface position** soil z Х Х Ζ 70.00 115.30 160.00 115.50 Probable Bedrock 110.30 0.00 115.30 0.00 160.50 160.50 115.50 110.30 5 Name : Soils and assignment Stage : 2 0

Water

KC

Water type : GWT

No.	GWT location	Coordinates of GWT points [m]							
NO.	Citri location	x	z	x	z	x	z		
		0.00	122.92	48.42	123.35	56.67	125.70		
1		68.31	123.10	104.37	123.10	119.68	123.10		
		122.26	125.70	160.50	125.70				

Tensile crack

Tensile crack not inputted.

Earthquake

Earthquake not included.

Settings of the stage of construction

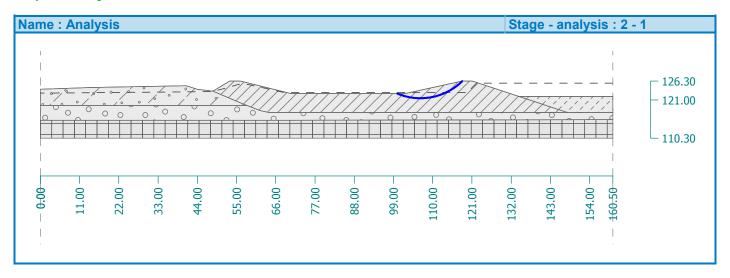
Design situation : permanent

Results (Stage of construction 2)

Analysis 1 (stage 2)

Circular slip surface

Slip surface parameters							
Center :	x =	106.56	[m]	- Anales :	α ₁ =	-22.69 [°]	
	z =	138.29	[m]		α ₂ =	44.43 [°]	
Radius :	R =	16.79	[m]				
	The slip surface after optimization.						

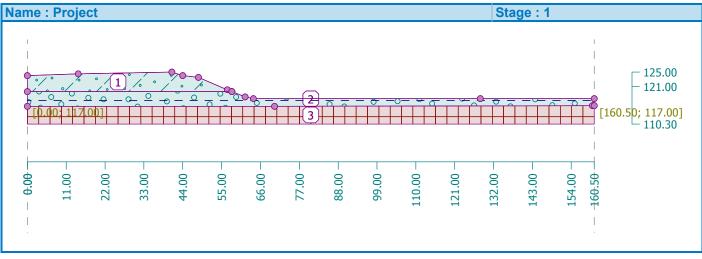

Segments restricting slip surface

No.	First	point	Secon	d point
NO.	x [m]	z [m]	x [m]	z [m]
1	101.50	122.88	102.39	122.65
2	101.98	122.67	118.15	126.21
3	117.87	126.08	118.35	126.38

Slope stability verification (Bishop)

Sum of active f	forces :	F _a =	110.59	kN/m
Sum of passive	e forces :	F _p =	285.48	kN/m

Sliding moment :	M _a =	1856.79	kNm/m
Resisting moment :	M _p =	4793.13	kNm/m
Factor of safety = 2.58 >	1.50		
Slope stability ACCEP	FABL I	E	


1

Slope stability analysis

Input data

Project

Task :13-182 Carp LandfillDescription :Cross Section - Infiltration Basin 2 (full) and Stormwater Pond 3 (empty)Author :KCDate :2014-01-27

Settings

Standard - safety factors **Stability analysis**

Verification methodology : Safety factors (ASD)

Safety factors					
	Permanent design situation				
Safety factor : SF _s = 1.50 [-]					

Interface

No.	Interface location	Coordinates of interface points [m]						
110.		x	z	x	z	x	z	
	1	0.00	124.00	14.43	124.50	40.91	125.00	
		43.97	124.00	48.42	123.50	56.62	120.00	
1		57.88	119.50	61.66	118.00	64.03	117.50	
		128.26	117.50	160.50	117.50			
•		0.00	119.50	57.88	119.50			
2								
2		0.00	115.30	70.00	115.30	160.00	115.50	
3			115.50					

Soil parameters - effective stress state

No.	Name	Pattern	Φef [°]	c _{ef} [kPa]	γ [kN/m ³]
1	Compact to Very Dense Silty Fine Sand		36.00	0.00	22.00
2	Very Dense Sand and Rock Fragments		38.00	0.00	23.00
3	Proposed Fill for Ponds		32.00	0.00	19.00
4	Proposed Uncompacted Fill for Ponds		27.00	0.00	18.00

Soil parameters - uplift

No.	Name	Pattern	γsat [kN/m ³]	γs [kN/m ³]	n [-]
1	Compact to Very Dense Silty Fine Sand		22.00		
2	Very Dense Sand and Rock Fragments		23.00		
3	Proposed Fill for Ponds		19.00		
4	Proposed Uncompacted Fill for Ponds		18.00		

Soil parameters

Compact to Very Dense Silty Fine Sand

Unit weight :	γ =	22.00 kN/m ³
Stress-state :	effectiv	/e
Angle of internal friction :	φ_{ef} =	36.00 °
Cohesion of soil :	c _{ef} =	0.00 kPa
Saturated unit weight :	γ _{sat} =	22.00 kN/m ³

Unit weight :	γ = 23.00 kN/m ³
Stress-state :	effective
Angle of internal friction :	φ_{ef} = 38.00 °
Cohesion of soil :	c _{ef} = 0.00 kPa
Saturated unit weight :	γ_{sat} = 23.00 kN/m ³

Proposed Fill for Ponds

Unit weight :	γ = 19.00 kN/m ³
Stress-state :	effective
Angle of internal friction :	φ _{ef} = 32.00 °
Cohesion of soil :	c _{ef} = 0.00 kPa
Saturated unit weight :	γ_{sat} = 19.00 kN/m ³

Proposed Uncompacted Fill for Ponds

Unit weight :	γ = 18.00 kN/m ³
Stress-state :	effective
Angle of internal friction :	φ_{ef} = 27.00 °
Cohesion of soil :	c _{ef} = 0.00 kPa
Saturated unit weight :	_{γsat} = 18.00 kN/m ³

Rigid bodies

No.	Name	Sample	γ [kN/m ³]
1	Probable Bedrock		24.00

Assigning and surfaces

No.	Surface position	Coordi	nates of su	urface points	[m]	Assigned
NO.	Surface position	x	z	x	z	soil
		57.88	119.50	56.62	120.00	
		48.42	123.50	43.97	124.00	Silty Fine Sand
1		40.91	125.00	14.43	124.50	。
		0.00	124.00	0.00	119.50	
		70.00	115.30	160.00	115.50	Very Dense Sand and Rock
	· · · · · · · · · · · · · · · · · · ·	160.50	115.50	160.50	117.50	Fragments
2		128.26	117.50	64.03	117.50	
		61.66	118.00	57.88	119.50	
		0.00	119.50	0.00	115.30	
		160.00	115.50	70.00	115.30	Probable Bedrock
		0.00	115.30	0.00	110.30	Probable Dedrock
3		160.50	110.30	160.50	115.50	

Water

Water type : GWT

No.	GWT location	Coordinates of GWT points [m]						
NO.	OWTIOCATION	x	z	x	z	x	z	
4		0.00	117.00	160.50	117.00			
1								

[GEO5 - Slope Stability | version 5.17.12.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2014 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | sales@gtscad.com| http://www.gtscad.com]

Tensile crack

KC

Tensile crack not inputted.

Earthquake

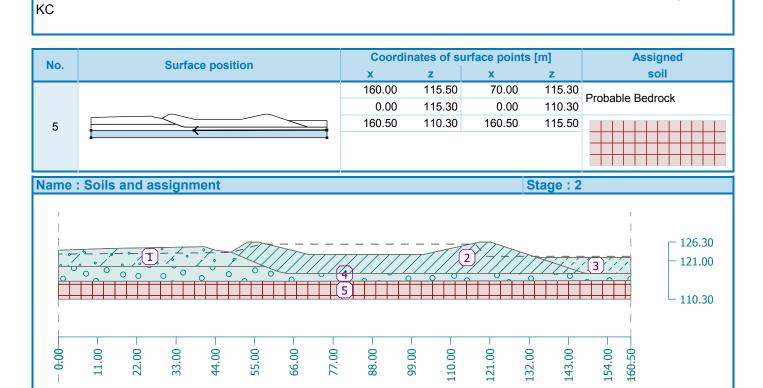
Earthquake not included.

Settings of the stage of construction

Design situation : permanent

Input data (Stage of construction 2)

Embankment interface


No.	Interface location	Coordinates of interface points [m]							
NO.	Interface location	x	z	x	z	x	z		
		48.42	123.50	53.06	126.30	56.12	126.30		
		70.25	122.80	70.38	122.80	102.27	122.80		
1		118.18	126.30	121.14	126.30	134.18	122.00		
		160.50	122.00						
		134.18	122.00	147.68	117.50				
2									

Assigning and surfaces

No.	Surface position	Coordi	nates of su	urface points	[m]	Assigned
NO.	Surface position	x	z	x	z	soil
		57.88	119.50	56.62	120.00	
		48.42	123.50	43.97	124.00	Silty Fine Sand
1		40.91	125.00	14.43	124.50	• • • • • • • • •
		0.00	124.00	0.00	119.50	
		134.18	122.00	121.14	126.30	Dropood Fill for Dondo
		118.18	126.30	102.27	122.80	Proposed Fill for Ponds
		70.38	122.80	70.25	122.80	
0		56.12	126.30	53.06	126.30	
2		48.42	123.50	56.62	120.00	
		57.88	119.50	61.66	118.00	
		64.03	117.50	86.22	117.50	
		128.26	117.50	147.68	117.50	
		147.68	117.50	160.50	117.50	Proposed Uncompacted Fill
		160.50	122.00	134.18	122.00	for Ponds
3						
		70.00	115.30	160.00	115.50	Very Dense Sand and Rock
		160.50	115.50	160.50	117.50	Fragments
		147.68	117.50	128.26	117.50	
4		86.22	117.50	64.03	117.50	
		61.66	118.00	57.88	119.50	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
		0.00	119.50	0.00	115.30	, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

[GEO5 - Slope Stability | version 5.17.12.0 | hardware key 8221 / 1 | Alston Associates Inc | Copyright © 2014 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [GTS CAD BUILD Limited | sales@gtscad.com| http://www.gtscad.com]

13-182 Carp Landfill

Water

1

Water type : GWT

No	No. GWT location		Coord	dinates of G	WT points	[m]	
NO.		x	z	x	z	x	z
X A	0.00	122.92	48.42	123.35	56.67	125.70	
1		117.01	125.70	119.78	122.30	132.52	122.30
		160.50	122.30		·		

Tensile crack

Tensile crack not inputted.

Earthquake

Earthquake not included.

Settings of the stage of construction

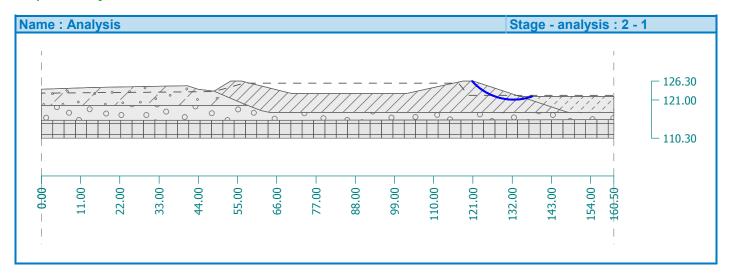
Design situation : permanent

Results (Stage of construction 2)

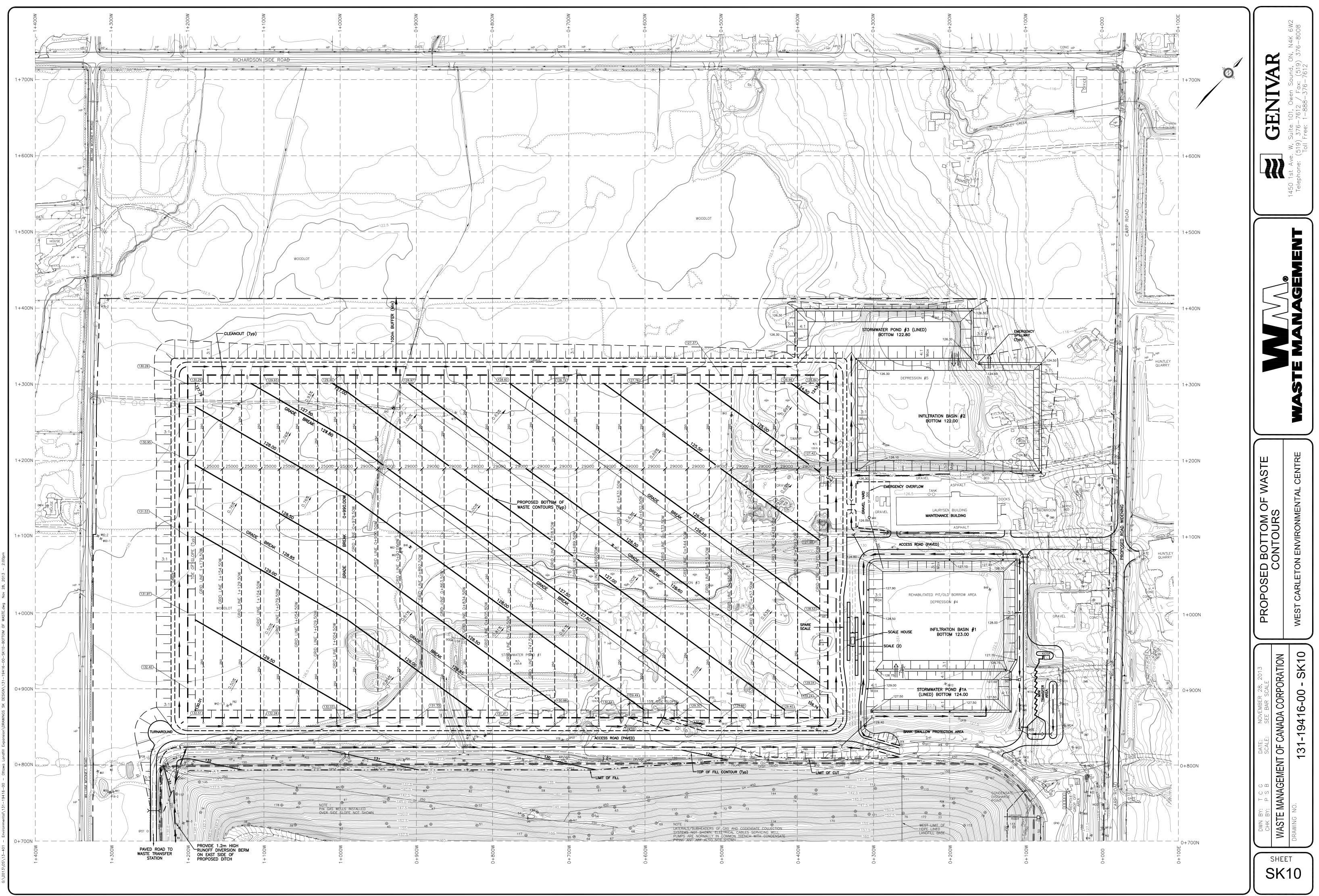
Analysis 1 (stage 2)

Circular slip surface

Slip surface parameters						
Center :	x =	132.40	[m]	Angles :	α ₁ =	-48.09 [°]
	z =	136.74	[m]		α ₂ =	19.43 [°]
Radius :	R =	15.63	[m]			
The slip surface after optimization.						


Segments restricting slip surface

No.	First	point	Second point		
NO.	x [m]	z [m]	x [m]	z [m]	
1	120.86	126.24	134.36	121.80	
2	134.02	121.75	134.64	122.14	
3	121.08	126.38	121.07	126.12	


Slope stability verification (Bishop)

Sum of active forces :	F _a =	121.25 kN/m
Sum of passive forces :	F _p =	232.20 kN/m

Sliding moment :	M _a =	1895.11	kNm/m		
Resisting moment :	M _p =	3629.32	kNm/m		
Factor of safety = 1.92 > 1.50					
Slope stability ACCEPTABLE					

АРРЕNDIX 5 DRAWING 131-19416-00 – sк10

